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A brief introduction to contact transformations due to Dirac and path
integral formulation of quantum mechanics with example.

In my beginning is my end - T.S.Eliot, Four Quartets
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1 Introduction

A new approach to quantum theory was developed by Feynman in 1941. His motivation was
to look for a formulation which would be in analogy with the Lagrangian approach of classical
mechanics. Feynman’s theory was based on the conjecture that the transition amplitude

〈x′, t+ ∆t|x, t〉 = w exp

(
i

~

∫ t+∆t

t

L(x, ẋ)dt

)
where L is the langragian, ∆t is assumed to be infinitesimally small and the weight factor w is
assumed to be independent of the potential. The expression above is also known as the short time
propagator.

Feynman was initially unsuccessful in finding a suitable way of incorporting the action integral in
quantum mechanics i.e to retrieve the conventional quantum mechanics starting with action. One
of the visiting professor at Princeton told him that there is a paper by Dirac where Lagrangian
does come into Quantum Mechanics. Feynman was excited, and searched for the paper the next
day.

As it turned out, the basic foundation of path integral formalism was developed over the next few
days where Feynman built up on Dirac’s idea and derived all the results one by one.

1.1 Functional Calculus - Basic Ideas

The concept of a functional and its calculus is important in the path integral formalism. The
prime reason being that mostly we deal with the ’action’ and it is also a functional.

A functional takes a function as an argument, as does a function of a function, and assigns it to a
number. But they are not the same thing. Whereas, function of a function just looks at the value
of the argument function, a functional looks at the entire behaviour of the argument function. In
other words, functional takes as input a function y(x) on a domain – not the value of the function
at a specific point x, but all the values of y at all the x’s in the domain.

This can be better understood with the following example :

If f(x) = x2 and g(x) = e−x, then

y = g(f(x)) = e−f(x) = e−x
2

is a usual function of a function which takes particular ’x’ and gives out a ’y’ (i.e number).

The functional y = g[f(x)] (square brackets to make the distinction) would also have a value that
depends on f(x), but now it will not depend on a particular ’x’ but specified range of ’x’ (say from
0 to 1).

y = g[f(x)] =

∫ 1

0

f(x)dx = x2dx

Also, the functional derivative is given by :

δF

δφ
= lim

h→0

1

h

(∫
g(x)(φ(x) + hδ(x− ξ))dx− F [φ(x)]

)
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= lim
h→0

1

h

∫
g(x)hδ(x− ξ)dx

= g(ξ)

1.2 Principle of Least Action & Euler- Lagrange Equations

One of the most natural and elegant way of determing the path x(t) is through principle of least
action. The action S, is calculated for every path and the path that extremises (minimum) the
action is the classical path. It means that S[x(t)] will be unaffected in the first order if the x(t) is
changed slightly.

The action is given by,

S =

∫ tb

ta

L(ẋ, x, t)

δx(ta) = δx(tb) = 0

S[x+ δx] =

∫ tb

ta

L(ẋ+ δẋ, x+ δx, t)dt

=

∫ tb

ta

(
L(ẋ, x, t) + δẋ

∂L

∂ẋ
+ δx

∂L

∂x

)
dt

= S[x] +

∫ tb

ta

(
δẋ
∂L

∂ẋ
+ δx

∂L

∂x

)
dt

Integrating by parts, we get :
Now since, δx vanishes at the boundaries and we can choose δx arbitrarily along any of the

infinite paths, we have
This is the classical Euler-Lagrange equation of the motion.

2 Lagrangian in Quantum Mechanics

Quantum Mechanics was based on the Hamiltonian formulation of classical mechanics. The prime
reason appears to be that the canonical coordinate and momenta on which Hamiltonian thoery is
based has a quite staright forward quantum analog. Since, there exists an alternate approach in
the form of Lagrangian, it is obvious to think about a different formulation in its form. Equations
of motion can be carved out using the stationary property of the action (time derivative of the
Lagrangian) functional. In contrast, no such method exists for Hamiltonian method. Also, the
action is more suited to relativistic invariance unlike the former.

One of the main advantages of the path integral formalism is that it enables one to discuss tra-
jectories for the motion of particle in quantum mechanics and thus makes it resemble classical
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mechanics more. Dirac for the first time discussed about the Lagrangian in Quantum Mechan-
ics in the paper [8] [9] . He argued that the propagator is analogous to exp(iS/~). The main
motivation was not to take the ideas of the classical Lagrangian theory, not the equations.

The motivation to go ahead with this approach is that the classical equation of motion comes
out in a very simple way. If you take the limit h → 0 , the weight factor exp(iS/~) oscillates
very rapidly. Therefore, we expect that the main contribution to the path integral comes from
paths that make the action stationary. This is nothing but the derivation of EL equation from
the classical action. Therefore, the classical trajectory dominates the path integral in the small h
limit. Secondly, we know what path the particle has chosen, even when we know the initial and
final positions. This is a natural generalization of the two-slit experiment. Even if we know where
the particle originates from and where it hit on the screen, we know which slit the particle came
from. As it is discussed in [1], we can consider drilling infinite holes in the screen and we have
to consider the contribution from all paths i.e the particle can come from any hole as it desires.
The effectiveness of the path integral can also be clearly seen in how effectively it can calculate
partition functions in statistical mechanics.

2.1 Contact Transformations & Transition Kernel

One of the most important ideas that can be directly lifted from classical mechanics was that
of Contact Transformations (also called Canonical Transformations & Symplectomorphism). A
transformation (q, p) 7→ (Q(q, p, t), P (q, p, t)) is called a contact trnaformation if it preserves the
Poisson bracket which is given by :

{f, g} =
∂f

∂xi
∂g

∂pi
− ∂g

∂xi
∂f

∂pi
= −{g, f}

Let there be some K that satisfies :

Q̇i =
∂K

∂Pi

; Ṗi =
∂K

∂Qi

K(Q,P, t) = H(q, p, t) + Ḟ (q, p,Q, P, t) (1)

δ

∫ tf

ti

(
piq̇

i −H(q, p, t)
)
dt = δ

∫ tf

ti

(
PiQ̇

i −K(Q,P, t)
)
dt

Out of the four generating functions , we have F1(q,Q, t).

Ḟ1(q,Q, t) =
∂F1

∂qi
q̇i +

∂F1

∂Qi
Q̇i +

∂F1

∂t

which upon substitution in (1) gives :

pi =
∂F1

∂qi
;Pi = −∂F1

∂Qi

Now, F1 can be identified with S and we can write with loss of generality,

pr =
∂S

∂qr
;Pr = − ∂S

∂Qr
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〈q′|α|Q′〉 =

∫
〈q′|α|q′′〉dq′′〈q′′ |Q′〉 =

∫
〈q′|Q′′〉dQ′′〈Q′′ |α|Q′〉

〈q′|qr|Q′〉 = q′r〈q′|Q′〉

〈q′|pr|Q′〉 = −i~ ∂

∂q′r
〈q′|Q′〉 (2)

〈q′|Qr|Q′〉 = Q′r〈q′|Q′〉

〈q′|Pr|Q′〉 = i~
∂

∂Q′r
〈q′|Q′〉

〈q′|f(q)g(Q)|Q′〉 =

∫ ∫
〈q′|f(q)|q′′〉dq′′〈q′′|Q′′〉dQ′′〈Q′′|g(Q)|Q′〉

= f(q′)g(Q′)〈q′|Q′]〉

〈q′|
∑
k

fk(q)gk(Q)|Q′〉 =
∑
k

fk(q′)gk(Q′)〈q′|Q′〉

〈q′|α(qQ)|Q′〉 = α(q′Q′)〈q′|Q′〉

This is a remarkable equation as it gives the relation between α(qQ) which is a function of
operators and α(q′Q′) which is function of numerical variables.

Let us use this result for α = pr and use :

〈q′|Q′〉 = e
iU
~

where U is a function of q’ and Q’

〈q′|pr|Q′〉 =
∂U(q′Q′)

∂q′r
〈q′|Q′〉

using eq. 1 above.
Comparing we get,

pr =
∂U(qQ)

∂qr
(3)

Similarly using α = Pr we get,

Pr = −∂U(qQ)

∂Qr

(4)

Dirac later also conjectured that the transition kernel can relate the initial wave function to the
later wave function through the following equation :

ψ(x, t) =

∫
G(x, x0)ψ(x0, t0)dx0 where, t > t0 (5)
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G is called the Kernel or a ’Propagator’. As discussed above, it was immediately recognised that
the kernel was analogous to exp(iS/~).

But, analogous has a tricky meaning and is not explicit enough to establish the relation between
different mechanics.

3 Path Integral Approach

Feynman in his nobel lecture said - ’So, I simply put them equal, taking the simplest example . But
soon found that I had to put a constant of proportionality A in, suitably adjusted. When I substituted
and just calculated things out by Taylor-series expansion, out came the Schrödinger equation. So
I turned to Professor Jehle, not really understanding, and said, ”Well you see Professor Dirac
meant that they were proportional.” Professor Jehle’s eyes were bugging out – he had taken out a
little notebook and was rapidly copying it down from the blackboard and said, ”No, no, this is an
important discovery.”

3.1 The Quantum Mechanical Amplitude

In dealing with classical motion, only the path that extremises the action is of importance wheras
in quantum mechanics all the paths that connect the starting and end points are of importance.
Every possible path to go from ’a’ to ’b’ contributes to the amplitude. They moreover contributes
equally to the amplitude but through different phases. The probability P(b,a) to go from xa at
time ta to xb at later time tb is the absolute square of the amplitude P (a, b) = |K(b, a)|2.

The amplitude K(b, a) is the sum of contribution ϕ[x(t)] from each path.

K(b, a) =
∑
a→b

ϕ[x(t)]

The contribution of a given path has a phase which is proportional to action S.

ϕ[x(t)] = A× exp

(
i

~
S[x(t)]

)
where, A is a constant.

4 Recovering Schrödinger Equation from Path Integral

Schrödinger equation determines infinitesimal change in the wave function. To recover the Schrödinger
equation. we have to consider infinitesimal form of the transition amplitude or the path integral.

S =

∫
Ldt = Laverageε (6)

S =
1

2ε
m(x− y)2 − U

(
x+ y

2

)
ε (7)

G(x, y) = exp

(
i
(x− y)2

2ε~

)
(1− U)

ε

~
(8)
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Let us introduce a new variable, ζ = x− y and write ψ(x, t+ ε) in terms of it.

ψ(x, t+ ε) ≈
∫

exp

(
imζ2

2~ε

)(
1− iε

~
U(x− ε

2
)

)
ψ(x− ζ, t)dζ (9)

Remembering that,

ψ(x− ζ, t) = ψ(x, t)− ζ ∂ζ
∂x

+
1

2
ζ2 ∂

2ζ

∂2x
+ ....... (10)

We finally get after throwing away the second order terms and letting ε→ 0

ψ(x, t) =

∫
exp(

imζ2

2~ε
)ψ(x, t)dζ (11)

This can be simplified by using the standard result of a Gaussian Integral and gives :

ψ(x, t) =

√
2πi~ε
m

ψ(x, t) (12)

We have

K =

√
m

2πi~ε
exp(

iS

~
) (13)

Plugging Taylor’s expansion and writing

U

(
x− ζ

2

)
ε = U(x)ε

ψ(x, t+ ε) ≈ A

∫
exp

(
imζ2

2~ε

)[
1− iε

~
U(x)

](
ψ(x, t)− ζ ∂ψ

∂x
+
ζ2

2

∂2ψ

∂x2

)
dζ

ψ(x, t+ ε) ≈
[
1− iε

~
U(x)ψ(x, t)

]
−
[
A
∂ψ

∂x

∫
exp(

imζ2

2~ε
)ζdζ

]
+
A

2

∂2ψ

∂x2

∫
exp(

imζ2

2~ε
)ζ2dζ (14)

Now, we see that the second term is an odd integral and it vanishes. The third can be readily
evaluated 1

ψ(x, t+ ε) = ψ(x, t)− i

~
εU(x)ψ(x, t) +

1

2

i~ε
m

∂2ψ

∂x2
(15)

ψ(x, t+ ε)− ψ(x, t) =
−i
~
εU(x)ψ(x, t) +

1

2

i~ε
m

∂2ψ

∂x2
(16)

Simplifying we get,

i~
∂ψ

∂t
=
−~2

2m

∂2ψ

∂x2
+ U(x)ψ(x, t) (17)

This is nothing but the time-dependent Schrödinger Equation. Also, we note that this can be
extended to deal with any arbitrary time difference ∆t by slicing it into N intervals. [7]

1 ∫
x2 exp(−ξx2)dx =

1

2ξ

√
π

α
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4.1 Propagator for Harmonic Oscillator

One of the major applications of the path integral formalism in intial days was to reproduce the
results for the quantum harmonic oscillator obtained through the usual Schrödinger equation.

In case of harmonic oscillator, the lagrangian is given by :

L(x, ẋ) =
1

2
mẋ2 − 1

2
mω2x2 (18)

We have to determine S[xcl(t)], for which, we look for a classical path xcl(t) which obeys xcl(0) = x0

and xcl(T ) = xf .
The Euler-Lagrange equation gives us the classical equation of motion as :

mẍcl +mω2xcl = 0

The general solution can be written as :

xcl(t) = A sin(ωt) +B cos(ωt)

The boundary conditions xcl(0) = x0 and xcl(T ) = xf are satisfied for :

A =
xf − x0 cos(ωT )

sin(ωT )
; B = x0

and that gives the classical path as ,

xcl(t) =
xf − x0 cos(ωT )

sin(ωT )
sin(ωt) + x0 cos(ωt) (19)

Also, the velocity along the classical path is given by :

ẋcl(t) = ω

(
xf − x0 cos(ωT )

sin(ωT )

)
cos(ωt)− ωx0 sin(ωt) (20)

Using (19) and (20) in (18) and in turn using its time derivative in (13), gives the propagator ’K’
for the harmonic oscillator as

K(xf , T ;x0) =

√
mω

2πi~ sin(ωT )
exp

(
i

2sin(ωT )

[
(x2

f + x2
0) cos(ωT )− 2xfx0

])



9

References

[1] A.Zee, ’Quantum Field Theory in a Nutshell’

[2] Feynman & Hibbs, ’Quantum Mechanics and Path Integrals’, McGraw-Hill (1965)

[3] Simple Quantum Mechanical Phenomena and the Feynman Real Time Path Integral, A.
Dullweber et al.

[4] Phys.Rev. 34, 57 (1929)

[5] Am. J. Phys. 53, 880 (1985)

[6] J.Chem.Phys. 21, 1087 (1953)

[7] Am. J. Phys 64, 881 (1996)

[8] Physikalische Zeitschrift der Sowjetunion, Band 3, pp. 64-72 (1933)

[9] Review of Modern Physics 17, 195-199 (1945)

[10] The Metropolis-Hastings Algorithm, Dan Navarro & Amy Perfors, University of Adelaide

[11] Rudra Pratap, ’Getting Started with Matlab’, Oxford University Press

[12] R.Shankar, ’Principles of Quantum Mechanics’

http://prola.aps.org/abstract/PR/v34/i1/p57_1
http://ajp.aapt.org/resource/1/ajpias/v53/i9/p880_s1
http://jcp.aip.org/resource/1/jcpsa6/v21/i6/p1087_s1
http://ajp.aapt.org/resource/1/ajpias/v64/i7/p881_s1

	Introduction
	Functional Calculus - Basic Ideas
	Principle of Least Action & Euler- Lagrange Equations

	Lagrangian in Quantum Mechanics
	Contact Transformations & Transition Kernel

	Path Integral Approach
	The Quantum Mechanical Amplitude

	Recovering Schrödinger Equation from Path Integral
	Propagator for Harmonic Oscillator


