
La
st

ed
ite

d:
Ju

ne
15

,2
02

0

Numerical methods for tensor networks study of spin
systems and gauge theories

Raghav G. Jhaa

Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada

E-mail: rjha1@perimeterinstitute.ca

Abstract: In these lecture notes, we discuss numerical details of coarse-graining tensor
algorithms for studying classical statistical systems and describe tensor formulation of two-
dimensional pure gauge theory based using Wilson’s lattice action for SU(2) gauge group.
Python codes are also provided to allow for hands-on experience. This is very much work
in progress. If you have comments, please email them to me.
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1 Introduction

The main problem of dealing with quantum many-body systems is the size of the Hilbert
space. There is no hope to completely address the entire space even if we enter the NISQ
era or even beyond it. Therefore, an understanding of the ‘states that matters’ becomes
very important. In the last decade or so, it has been found that the ground states of local
gapped Hamiltonian with short-range interactions are astonisghgly concentrated in a very
tiny region of the Hilbert space which we hereafter call ‘area-law’ states. If one focusses
just on this region and forget about the complete Hilbert space, one can still uncover the
ground-state properties to reasonable accuracy. One of the guiding lights to identify and
isolate ‘area-law’ states has been the notion of entanglement entropy. It has been shown
that these special states follow a different scaling of the entropy than naively expected
(volume-scaling) from a random state in the Hilbert space.

This problem is not so easy to deal for critical systems or systems where you have long-
range interactions (say the Hamiltonian is next-to-next neighbour and even more non-local)
but it seems that the fruit does not fall far from ‘area-law’ states even in those cases. So,
one still has the advantage of not dealing with exponentially large Hilbert space H.

from ncon import ncon
import numpy as np

– 1 –
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          Hilbert space - too big!
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if N=  (Avogadro Number), then number of basis states is more 
than atoms in universe! Luckily for us, not all quantum states are 
important! How to find nice ones is a big and interesting problem. 
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Figure 1. XX

Figure 2. XX

"einsum"(Einstein’s summation convention) is a very useful NumPy tool for
contracting tensors. For example, matrix multiplication using this is –
np.einsum(’ij,jk->ik’, A, B) which is just Cik = AijBjk. Dot product is
– np.einsum(’i,i->’, A, B). See this.

But "einsum" is slow. In these lecture notes, we will use NCON except Exercise 1
where we will use "einsum" once. Please download/copy NCON from here.

For example, Cip = AijkBpjk can be implemented in Python using NCON as:
C = ncon((A, B),([-1,2,1], [-2,2,1]))

– 2 –

http://ajcr.net/Basic-guide-to-einsum/
https://github.com/rgjha/TensorCodes/blob/master/ncon.py
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• Same positive integers are contracted indices while the order [-1, · · · ]
stands for the ordering of the indices in the resulting tensor.

Figure 3. The figures are taken from [1]

Exercise 1: Consider the Hamiltonian of three spins (N = 3) quantum Ising model
given by:

H = σx1 ⊗ σx2 + σx2 ⊗ σx3 + σx3 ⊗ σx1 + h
(
σz1 + σz2 + σz3

)
Since dim(H) = 8, use exact diagonalization and compute ground state energy for
various h.

Exercise 1B: Construct the quantum Ising Hamiltonian for N spins and check that
it reproduces the result from previous exercise when N = 3. Now use exact diagonal-
ization and compute ground state energy for same values of h with N = 7 or N = 8.
Please do not try to run with N > 10.

Exercise 2: Calculate the trace of product of four random 3×3 matrices using einsum
and check that result the result agrees with that obtained from np.trace and np.dot.
You can construct random matrices using: A = np.random.rand(3,3)

Exercise 3: Compute the rank-four tensor Arqba which is equal to BijklCjiqrDlkab using
NCON where all indices run from 1 · · · 3. Draw a tensor diagram of this contraction.
You can choose the tensors to be random like before.

1.1 Singular Value Decomposition (SVD)

The SVD of an m × n real or complex matrix M is a factorization of the form UΣV †,
where U is m×m real or complex unitary matrix, Σ is m×n rectangular diagonal matrix
with non-negative real numbers on the diagonal, and V is an n×n real or complex unitary
matrix. The diagonal entries Σii of Σ are known as the singular values of M. The number
of non-zero singular values is equal to the rank of M.

– 3 –
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Figure 4. Diagrammatic representation of a rank-six tensor, Tαβγδκλ which can serve as a funda-
mental tensor of some 3d classical statistical system.
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Figure 5. The schematic diagram which shows how we can coarse-grain the tensor along one
direction and construct the transfer matrix and partition function.

Mathematical applications of the SVD include computing the pseudoinverse, matrix
approximations, and determining the rank, range, and null space of a matrix. The SVD
is also extremely useful in all areas of science, engineering, and statistics, such as signal
processing, least squares fitting of data, and process control.

SVD is an integral step in all tensor network coarse-graining algorithm. It helps in
reducing the ever-growing size of the fundamental tensor such that meaningful computa-
tions can be carried on classical computers. There are other alternatives which have been
explored - such as randomized SVD. We will only use SVD in these lectures.

2 Example I – Exact diagonalization

Here we will discuss the method of exactly diagonalizing the quantum hamiltonian for 3
spins and plot the ground state energy as a function of magnetic field. here

– 4 –

https://colab.research.google.com/drive/1Qyp7p-yluOOntsZHJib3X_rgyIa-XvFq#scrollTo=0yDxlt7qtuLr&line=12&uniqifier=1
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3 Example II – 2d Ising model

The exact result obtained is [2]
Let us define κ = sinh(2β)

2 cosh2(2β) and then the free energy density is given by: f =

− 1
β

(
log(2 cosh(2β))− κ2

4F3
(
1, 1, 1.5, 1.5; 2, 2, 2; 16κ2))

The critical temperature is given by:
Tc = 2

log(1+
√

2) = 2.26918531421 i.e. βc ≈ 0.44069
which is obtained by solving
sinh(2βc)2 = 1.

1 1

−1

−2 2 −4

−33

4 4

2

3
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Figure 6. One step of coarse-graining along a specific direction. The ncon equivalent of this
diagram is ncon([T1,T2,T3,T4],[[-2,1,2,5],[-1,5,3,4],[-4,1,2,6],[-3,6,3,4]])

In this example, we will reproduce Fig.(3) of arXiv version here[3].

The fundamental tensor T for the 2d classical Ising model can be written as:
Tijkl = WpiWpjWpkWpl where W is given by:
W = np.array([[

√
cosh β,

√
sinh β],[

√
cosh β,-

√
cosh β]])

The code is pasted below. You can refer to it if you are stuck. You will also need to use
a simple numerical differentiation code to compute −∂ lnZ

∂β from log of partition function.
You can see it below:

2d ISING CODE

import sys
import math
from math import sqrt
import numpy as np
from scipy import special
from numpy import linalg as LA

– 5 –

https://arxiv.org/pdf/1903.09650.pdf
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import scipy as sp
import time
import datetime
from ncon import ncon
from matplotlib import pyplot as plt
# For T=2.0, f_2d_Ising = -1.02579
# -dlnZ/d beta = -1.7455677143228514
# beta_c= 0.4407 ~ sinh(2\beta_{c})^2 = 1
# With J=1

D=12
D_cut=12
Niters=20
Ns = int(2**((Niters)))
Nt = Ns
vol = Ns**2
numlevels = Niters
norm_all = [0 for x in range(numlevels+1)]

startTime = time.time()
print ("STARTED: " , datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"))

def tensorsvd(input,left,right,D):
’’’Reshape an input tensor into a rectangular matrix with first index

corresponding
to left set of indices and second index corresponding to right set of

indices. Do SVD
and then reshape U and V to tensors [left,D] x [D,right]
’’’
T = input
left_index_list = []
for i in range(len(left)):

left_index_list.append(T.shape[i])
xsize = np.prod(left_index_list)
right_index_list = []
for i in range(len(left),len(left)+len(right)):

right_index_list.append(T.shape[i])
ysize = np.prod(right_index_list)
T = np.reshape(T,(xsize,ysize))

U, s, V = np.linalg.svd(T,full_matrices = False)

if D < len(s): # Truncate if length exceeds input D
s = np.diag(s[:D])
U = U[:,:D]
V = V[:D,:]

– 6 –
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else:
D = len(s)
s = np.diag(s)

U = np.reshape(U,left_index_list+[D])
V = np.reshape(V,[D]+right_index_list)
return U, s, V

def Z2d_Ising(beta):

a = np.sqrt(np.cosh(beta))
b = np.sqrt(np.sinh(beta))
W = np.array([[a,b],[a,-b]])
out = np.einsum("ia, ib, ic, id -> abcd", W, W, W, W)
return out

def Z2d_XY(beta, h):

betah = beta*h
for i in range (-Dn,Dn+1):

L[i+Dn] = np.sqrt(sp.special.iv(i, beta))

out = ncon((L, L, L, L),([-1],[-2],[-3],[-4]))
# Alt: T = np.einsum("i,j,k,l->ijkl", L, L, L, L)
for l in range (-Dn,Dn+1):

for r in range (-Dn,Dn+1):
for u in range (-Dn,Dn+1):

for d in range (-Dn,Dn+1):
index = l+u-r-d
out[l+Dn][r+Dn][u+Dn][d+Dn] *= sp.special.iv(index, betah)

return out

def CG_step(matrix, in2):

T = matrix
TI = in2
AAdag = ncon([T,T,T,T],[[-2,1,2,5],[-1,5,3,4],[-4,1,2,6],[-3,6,3,4]])
U, s, V = tensorsvd(AAdag,[0,1],[2,3],D_cut)
A = ncon([U,T,T,U],[[1,2,-1],[2,-2,4,3],[1,3,5,-4],[5,4,-3]])
AAAAdag = ncon([A,A,A,A],[[1,-1,2,3],[2,-2,4,5],[1,-3,6,3],[6,-4,4,5]])
U, s, V = tensorsvd(AAAAdag,[0,1],[2,3],D_cut)
AA = ncon([U,A,A,U],[[1,2,-2],[-1,1,3,4],[3,2,-3,5],[4,5,-4]])
maxAA = np.max(AA)
AA = AA/maxAA # Normalize by largest element of the tensor
return AA, maxAA

– 7 –



La
st

ed
ite

d:
Ju

ne
15

,2
02

0

if __name__ == "__main__":

beta = np.arange(0.42, 0.46, 0.0005).tolist()
Nsteps = int(np.shape(beta)[0])
f = np.zeros(Nsteps)

for p in range (0, Nsteps):

T = Z2d_Ising(beta[p])
#T = Z2d_XY(beta[p], 0.0)
norm = LA.norm(T)
T /= norm
Tim = T
Z = ncon([T,T,T,T],[[7,5,3,1],[3,6,7,2],[8,1,4,5],[4,2,8,6]])
C = 0
N = 1
C = np.log(norm)
Free = -(1.0/beta[p])*(np.log(Z)+4*C)/(4*N)

for i in range (Niters):

T, norm = CG_step(T, Tim)
C = np.log(norm)+4*C
N *= 4.0
Free = -(1.0/beta[p])*(np.log(Z)+4*C)/(4*N)
if i == Niters-1:

Z1 = ncon([T,T],[[1,-1,2,-2],[2,-3,1,-4]])
Z = ncon([Z1,Z1],[[1,2,3,4],[2,1,4,3]])
Free = -(np.log(Z)+4*C)/(4*N)
f[p] = Free

dx = beta[1]-beta[0] # Asssuming equal spacing
dfdx = np.gradient(f, dx)
d2fdx2 = np.gradient(dfdx, dx)
plt.plot(beta, f, marker="*", color = "r")
plt.title(’Free energy of classical 2d Ising model’, fontsize=20)
plt.xlabel(’Inverse Temperature, $\beta$’, fontsize=16)
plt.ylabel(’f’, fontsize=16)
plt.show()
# Now plot internal energy ’E’
plt.plot(beta, dfdx, marker="+", color = "b")
plt.title(’Internal energy of classical 2d Ising model’, fontsize=20)
plt.xlabel(’Inverse Temperature, $\beta$’, fontsize=16)
plt.ylabel(’E’, fontsize=16)
plt.show()

– 8 –
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plt.plot(beta, -d2fdx2, marker="*", color = "g")
plt.title(’Specific heat of classical 2d Ising model’, fontsize=20)
plt.xlabel(’Inverse Temperature, beta’, fontsize=16)
plt.ylabel(’SH’, fontsize=16)
plt.show()
print ("Specific heat peaks at $\beta$ = ",

beta[int(np.array(-d2fdx2).argmax())])
print ("COMPLETED: " , datetime.datetime.now().strftime("%Y-%m-%d

%H:%M:%S"))

4 Example II – 2d classical XY model

In this exercise, we will construct tensor formulation of classical XY model in two di-
mensions with h = 0 and calculate the free energy to reproduce the plot given in 7 from
[4].

We start with the fundamental tensor (four legs) which sits on each lattice site and
tiles the lattice.

Ti,j,k,l =
√
Il(β)Ir(β)Iu(β)Id(β)Ii+k−j−l(βh), (4.1)

where indices (i, j, k, l) denote the four legs of the tensor. The length of each leg, called bond
dimension, is infinite in principle from the character expansion formula. The coefficient
In(β) decreases exponentially with increasing n. Thus we can truncate the series and
approximate Ti,j,k,l by a tensor with finite bond dimension D with high precision. This
leads to a finite-dimensional tensor representation for the partition function

Z = Tr
∏
s

Tis,js,ks,ls . (4.2)

A bond links two local tensors. The two bond indices defined from the two end points are
implicitly assumed to take the same values. For example, if the bond connecting i and j
along the x direction, then ri = lj . The trace is to sum over all bond indices.

Magnetization is defined as,

m = 1
β

∂ lnZ
∂h

= Il+u−r−d−1(βh) + Il+u−r−d+1(βh)
2Il+u−r−d(βh) (4.3)

5 Example III – Entanglement Entropy

Consider dividing a Hilbert space, H into a product of two spaces as, H = HA ⊗ HB
corresponding to sub-systems A and B. Then the subsystem A can be described by,

ρA = TrB ρ =
∑
i

〈ψiB|ρ|ψiB〉 (5.1)

– 9 –
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Figure 7. The free and internal energy of the 2d XY model.

where the Tr is only over the HB. Then the entanglement entropy (also von Neumann,
sometimes also bipartite entanglement entropy) entropy is defined as,

SA = −TrA
(
ρA ln ρA

)
(5.2)

Some nice properties of SA are mentioned below:

• SA(ρA) is maximum when the state is maximally entangled. In such a case, SA(ρA) =
ln(dimHA)

• If ρA is a pure state (i.e. ρ2 = ρ), then SA = 0

• SA is constant under change of basis (unitary), i.e. SA(ρA) = SA(UρAU †)

Consider a state like,

|ψ〉 = cosθ| ↓↑〉+ sinθ| ↑↓〉 (5.3)

Then we can write, ρA = TrB ρ as,

ρA = cos2θ| ↓〉〈↓ |+ sin2θ| ↑〉〈↑ | (5.4)

which gives entropy as,

SA = −cos2θlogcos2θ − sin2θlogsin2θ (5.5)

Note that at θ = π/4, the entropy is maximum and the corresponding state is maximally
entangled.

EE CODE

– 10 –
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# This code generates a random state of "N" qubits and
# then computes the reduced density matrix of first "p" qubits.
# Then it calculates the entanglement entropy. Note that
# the entropy will be "p".

import sys
import math
from math import *
import numpy as np
from scipy import special
from numpy import linalg as LA
from numpy.linalg import matrix_power
from numpy import ndarray
import time

N=24
p=4 # Becomes expensive with increasing $p$. Don’t try p>10

Psi = np.random.randn(2**N)
# 2^N random coefficients
Psi = Psi/LA.norm(Psi)

A = Psi.reshape(2**p, 2**(N-p))
Rho = np.dot(A, np.transpose(A).conj())

def comEE(Rho):
u,v = LA.eig(Rho)
chi = u.shape[0]
#print ("Shape of u", np.shape(u)) # 2^p
#print ("Shape of v", np.shape(v)) # 2^p x 2^p
EE = 0
for n in range (0 , chi):

if u[n] > 0:
EE += -u[n] * math.log(u[n],2)

return EE

if __name__ == "__main__":

entropy = comEE(Rho)
print ("Entanglement Entropy is", entropy)

# S_exact = -rho log2(rho) = -1/d * ln (1/d) summed ’d’ times i.e. log2(d) =
log2(2^p) = p

– 11 –
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6 Homework problem!

It is also possible to formulate the tensor network for Wilson’s action for SU(2) gauge group
in two dimensions. This was done in [5]. Try to do this. You can also refer to my GitHub
page to see the code if you want here.

– 12 –

https://github.com/rgjha/TensorCodes/blob/master/2d_trg.py


La
st

ed
ite

d:
Ju

ne
15

,2
02

0

References

[1] R. Orus, “Exploring corner transfer matrices and corner tensors for the classical simulation of
quantum lattice systems,” Phys. Rev. B85 (2012) 205117, arXiv:1112.4101
[cond-mat.str-el].

[2] G. M. Viswanathan, “The hypergeometric series for the partition function of the 2d ising
model,” Journal of Statistical Mechanics: Theory and Experiment 2015 no. 7, (Jul, 2015)
P07004. http://dx.doi.org/10.1088/1742-5468/2015/07/P07004.

[3] H.-J. Liao, J.-G. Liu, L. Wang, and T. Xiang, “Differentiable programming tensor networks,”
Phys. Rev. X 9 (Sep, 2019) 031041.
https://link.aps.org/doi/10.1103/PhysRevX.9.031041.

[4] J. F. Yu, Z. Y. Xie, Y. Meurice, Y. Liu, A. Denbleyker, H. Zou, M. P. Qin, and J. Chen,
“Tensor Renormalization Group Study of Classical XY Model on the Square Lattice,” Phys.
Rev. E89 no. 1, (2014) 013308, arXiv:1309.4963 [cond-mat.stat-mech].

[5] A. Bazavov, S. Catterall, R. G. Jha, and J. Unmuth-Yockey, “Tensor renormalization group
study of the non-Abelian Higgs model in two dimensions,” Phys. Rev. D99 no. 11, (2019)
114507, arXiv:1901.11443 [hep-lat].

– 13 –

http://dx.doi.org/10.1103/PhysRevB.85.205117
http://arxiv.org/abs/1112.4101
http://arxiv.org/abs/1112.4101
http://dx.doi.org/10.1088/1742-5468/2015/07/p07004
http://dx.doi.org/10.1088/1742-5468/2015/07/p07004
http://dx.doi.org/10.1088/1742-5468/2015/07/P07004
http://dx.doi.org/10.1103/PhysRevX.9.031041
https://link.aps.org/doi/10.1103/PhysRevX.9.031041
http://dx.doi.org/10.1103/PhysRevE.89.013308
http://dx.doi.org/10.1103/PhysRevE.89.013308
http://arxiv.org/abs/1309.4963
http://dx.doi.org/10.1103/PhysRevD.99.114507
http://dx.doi.org/10.1103/PhysRevD.99.114507
http://arxiv.org/abs/1901.11443

	Introduction
	Singular Value Decomposition (SVD)

	Example I – Exact diagonalization
	Example II – 2d Ising model
	Example II – 2d classical XY model
	Example III – Entanglement Entropy
	Homework problem!

