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Problem 1 Srednicki 16.1

Solution : Attached hand written at the end.

Problem 2 Srednicki 22.1

Solution : The Noether current is defined as :

jµ(x) ≡ ∂L(x)

∂(∂µϕa(x))
δϕa(x)

And then the Noether charge, Q is defined as :

Q ≡
∫
d3x j0(x)

Q ≡
∫
d3x

∂L(x)

∂(∂0ϕa(x))
δϕa(x)

Q ≡
∫
d3x

∂L(x)

∂ϕ̇a(x)
δϕa(x)

Q =

∫
d3x Πa(x)δϕa(x) (1)

We have to evaluate [ϕa, Q]

[ϕa, Q] = [ϕa,

∫
d3x Πa(x)δϕa(x)] (2)

=

∫
d3x [ϕa,Π

b(x)]δϕb(x)δab (3)

Using the commutation relation,

[Π(x, t), ϕ(x′, t)] = −iδ3(x− x′)

Evaluating (3) and doing the δ integration, we get
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[ϕa, Q] = iδϕa

Problem 3 : Consider the Lagrangian for N complex scalar fields φa, with a = 1, 2, ...N :

L = ∂µφ
†
a∂

µφa − V (|φ|)

with |φ2| =
∑

a φ
†
aφ

a

a) Find the global symmetries of L ?
b) Use Noether’s theorem to compute the conserved currents associated with this symmetry ?
c) Construct the charges. In quantum theory, find their commutators ?

Solution : This given Lagrangian is invariant under global U(N) symmetry. It is because the
lagrangian consists of N scalar fields and their adjoint and such a unitary group transformation
leaves the lagrangian invariant. The symmetry is global since the parameter α which we define
below does not depend on space-time coordinates.
The scalar fields transforms as

φa = U b
a φb

where U is given by :

U = eiα
mTm

φ′(x) = eiα
mTmφ(x) (4)

where, T are N × N hermitian matrices (generators of the U(N) group).

Note that any N× N unitary matrix can be written in terms of hermitian matrix T as :

U = exp
(
iαkTk

)
To convince ourselves, we can check that :

exp
(
iαkTk

)†
exp

(
iαkTk

)
= 1 = UU †

We used the fact that T was a hermitian matrix.
This symmetry group has N2 generators. This means that we will have N2 conserved currents
and charges. It is important to note that the symmetry group related to EM interactions is U(1)
which has just a single generator. Also, U(N) can be thought as U(N) = U(1)

⊗
SU(N). The

U(1) group has one generator (photon !) and SU(N) has N2−1 generators and they add up neatly
to N2.

φ′(x) ≡ φ(x) + iαT φ(x)

This gives us,

δφ′(x) = iαT φ(x)

Now, the Noether current is given by :
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jµ =
∂L

∂(∂µφ)
δφ′(x)

jµ = iα
∂L

∂(∂µφ)
Tφ(x)

To press the fact that we have same number of currents as generator, we specify it with an
index.

jµi = iα
∂L

∂(∂µφ)
Tiφ(x)

The Noether charge is given by :

Qi ≡
∫
d3x j0i

This gives us,

Qi ≡ iα

∫
d3x Π Tiφ(x)

Now, we also recall our old commutation relation,

[Π(x, t), φ(x′, t)] = −iδ3(x− x′)

Corrected Part(b) and Part(c) on the next page.
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Problem 4 Srednicki 36.5

Solution : N massless Weyl fields ψj

L = iψ†jσ
µ∂µψj

where the repeated index j is summed. The lagrangian is clearly invariant under the U(N)
transformation,

ψj → Ujkψk

where U is a unitary matrix. State the invariance group of the following cases :

a) N Weyl fields with a common mass m,

L = iψ†jσ
µ∂µψj −

1

2
m
(
ψjψj + ψ†jψ

†
j

)
F

Let’s make the transformation :

ψj → Ajiψi

where, A will be identified belonging to the group such that the lagrangian is invariant under
the above change of ψ.

L → i(Ajiψi)
†σµ∂µ(Ajiψi)−

1

2
m(Ajiψi)(Ajiψi)−

1

2
m(Ajiψi)

†(Ajiψi)
†

L → i(ψ†iA
†
jiσ

µ∂µAjiψi)−
1

2
m(ψiA

T
ijAjiψi)−

1

2
m(ψ†iA

∗
ijψ
†
iA
†
ji)

Now, is clear to see that the invariant transformation must be real matrices since we have a
complex conjugate in the second part which cannot be cancelled if we don’t consider it to be real.

This changed lagrangian will give the initial if following is true :

• A = A∗

• A†A = I

• AAT = I = ATA

These are the properties of real unitary matrix which is all called orthogonal. Hence this is
invariant under O(N)

b) N massless Majorana fields,

L =
i

2
ΨT
j Cγµ∂µΨj

F

We can re-write the given Lagrangian in the following form :
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L =
i

2
Ψ̄jγ

µ∂µΨj

We have used the result that ΨTC = Ψ̄j

Now, using Srednicki (36.27) and neglecting the boundary term, we obtain :

L =
i

2

[
χ†σ̄µ∂µχ+ ζ†σ̄µ∂µζ

]
Now, we recall that for Majorana fields, particles are their own anti-particles and we obtain :

L = i
(
χ†jσ

µ∂µχ
)

Comparing the above with the lagrangian for N-massless Weyl fields, we see that they are the
same. Hence, they transform similarly. They transform under U(N).

c) N Majorana fields with a common mass m,

L =
i

2
ΨT
j Cγµ∂µΨj −

1

2
mΨT

j CΨj

F

This case is similar to the situation in part(a) where, the we can do similar stuff with what we
did in the previous part. This lagrangian will be invariant under same group as in part(a). This
is invariant under O(N).

d) N massless Dirac fields

L = iΨ̄jγ
µ∂µΨj

F

Each Dirac field consists of two Weyl spinors. This lagrangian is that of 2N massless Weyl fields
and it remains invariant under U(2N). Also, note that in part(b), the lagrangian was invariant
under U(N) since they were Majorana massless fields where particle and antiparticle were same.
But, here there is an increase of 2-fold symmetry because of the mixing and we have a lagrangian
that is invariant under U(2N) (enlarged group).

e) N Dirac fields with common mass m,

L = iΨ̄jγ
µ∂µΨj −mΨ̄jΨj

F

This is now almost identical to Part(c) done above for N massless Majorana fields. Here, we will
have the symmetry group as O(2N) since, there are twice as many terms, infact 2N-massive
Weyl spinors.

Problem 5 Srednicki 33.2
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The Lorentz group (homogenous) consists of boost and rotation. If K and J are the boost and
the angular momentum operators, then we can write :
The Lie algebra for this SO(3, 1) homogenous Lorentz group is :

[Ki, Kj] = −iεijkJk

[Ji, Jj] = iεijkJk

[Ji, Kj] = iεijkKk

We define Ni and N †i as below :

Ni =
1

2
(Ji − iKi)

N †i =
1

2
(Ji + iKi)

Now, the commutation relations of Ni and N †i are,

[Ni, Nj] = iεijkNk (5)

[N †i , N
†
j ] = iεijkN

†
k (6)

[Ni, N
†
j ] = 0 (7)

This implies that

• N and N† are independent and have intrinsic SU(2) symmetry.

And Lorentz group has SU(2)
⊗

SU(2) symmetry (same algebra) following this with 6 independent
parameters (i.e 3 for boosts and 3 for angular momentum).

We have to prove Eq. 1-3 using the above defined relations.

Proof 1 :

[Ni, Nj] =
1

4
[Ji − iKi, Jj − iKj]

4[Ni, Nj] = [Ji, Jj] + [Ji,−iKj]− i[Ki, Jj]− [Ki, Kj]

This gives us using above defined relations

4[Ni, Nj] = iεijk (Jk − iKk − iKk + Jk)

4[Ni, Nj] = 4iεijkNk
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=⇒
[Ni, Nj] = iεijkNk

Proof 2 :

[N †i , N
†
j ] =

1

4
[Ji + iKi, Jj + iKj]

4[N †i , N
†
j ] = [Ji, Jj] + [Ji, iKj] + i[Ki, Jj]− [Ki, Kj]

This gives us using above defined relations

4[N †i , N
†
j ] = iεijk (Jk + iKk + iKk + Jk)

4[Ni, Nj] = 4iεijkN
†
k

=⇒
[Ni, Nj] = iεijkN

†
k

Proof 3 :

[Ni, N
†
j ] =

1

4
[Ji − iKi, Jj + iKj]

4[Ni, Nj] = [Ji, Jj] + [Ji, iKj]− i[Ki, Jj] + [Ki, Kj]

This gives us using above defined relations

4[Ni, Nj] = iεijk (Jk + iKk − iKk − Jk)

4[Ni, Nj] = 0

=⇒
[Ni, Nj] = 0

Problem 6 Srednicki 34.2

Solution : We need to show that Eq (34.9) and Eq (34.10) obey Eq (34.4)

(SijL )a
b =

1

2
εijkσk (34.9)

(Sk0L )a
b =

1

2
iσk (34.10)

[SµνL , SρσL ] = i (gµρSνσL − gνρS
µσ
L − g

µσSνρL + gνσSµρL ) (34.4)

Writing in terms of same indices as we need to prove, 34.4 reads as :

[SijL , S
mn
L ] = i

(
gimSjnL − g

jmSinL − ginS
jm
L + gjnSimL

)
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Now, using (34.9) and taking the commutator with i, j & m, n indices, we have :

[SijL , S
mn
L ] =

1

4
εijkεmnp[σk, σp]

Now if we have k = p above then, the commutator will vanish. But, we can play around with
taking k = m and k = n . This gives us,

[SijL , S
mn
L ] =

1

4

(
εijmεmnp[σm, σp] + εijnεmnp[σn, σp]

)
Now doing the same thing with using p = i and p = j we obtain eventually,

[SijL , S
mn
L ] =

1

4

(
εijmεmni[σm, σi] + εijmεmnj[σm, σj] + εijnεmni[σn, σj] + εijnεmnj[σn, σj]

)
(8)

Now, this looks pretty much set for matching what we expect.
Recall that,

[σa, σb] = 2iεabcσ
c = 4iSabL

Using this in Eq(8) and noting that the delta-function that comes in can be written as metric
tensor. We obtain, the following :

[SijL , S
mn
L ] = i

(
gimSjnL − g

jmSinL − ginS
jm
L + gjnSimL

)
This concludes Part(a).

Part B: Show that

(Sk0L )a
b =

1

2
iσk (34.10)

obeys 34.4 as well.
We take the commutator constructed of (34.10) as,

[Sk0, Sl0] = −1

4
[σk, σl]

Using the commutator of σ′s we get,

[Sk0, Sl0] =
−i
2
εklmσm = −iSklL (9)

Now, we go back to (34.4) and see what we should expect from that in this case.

[Sk0, Sl0] = i
(
gklS00

l − g0lSk0L − gk0S0l
L + g00SklL

)
Note the following things : 1) S is antisymmetric tensor and 2) Metric is diagonal. The first term
is zero, second and third are zero too ! And, these reduce the above to :

[Sk0, Sl0] = −iSklL (10)

Comparing (9) and (10), we prove the required.
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