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Abstract

The extensive study of topological field theories has not only resulted in our im-
proved understanding of gauge theories and supersymmetry but also in elegant
proofs of many mathematical results. The stochastic quantization of Langevin
equation, BRST symmetry, twisted supersymmetry and Nicolai map are all inter-
twined with the idea of topology. Since these theories have no dynamical degrees
of freedom and all the excitations are purely topological, it is hoped that this will
prove crucial in our understanding of the confinement phase of QCD and many
other phenomenon. In this report, we will discuss some properties of the topolog-
ical theories and elaborate the relation between supersymmetry and topological
field theories. We will also briefly talk about cases of open gauge algebras and
reducible theories and point out the limitations of the usual BRST quantization
approach and the following requirement for a more generalized scheme of quanti-
zation based on introduction of anti-fields developed by Batalin and Vilkovisky.
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1 Introduction

Topology, in the mathematics literature, is defined through the notion of homeomor-
phism equivalence class. Two manifolds M and M′

are said to be homeomorphic if
there exists a homeomorphism f : M 7→ M′ 1. One can then divide the manifold into
homeomorphism equivalence classes. An object which takes on a constant value on
each class is called ”topological invariant”.However, we can also further subdivide each
homeomorphism class into diffeomorphism (i.e C∞ mappings) between the members.
An object which is invariant under metric deformations (i.e topological) is certainly
also diffeomorphism invariant[1].

1.1 Definitions

In BRST quantization of gauge theories, one constructs a BRST operator Q which is
nilpotent. The variation of any functional O is denoted by δO = {Q,O}, where the
bracket is used to represent the graded commutator with the fermionic charge Q. A
state which is annihilated by Q is called Q-closed, while a state of the form Q|χ〉 is
called Q-exact. From the BRST invariance of the vacuum, we can conclude that the
vacuum expectation value of QO for any functional O is zero i.e

〈0|O|0〉 = 0

An operator of the form {Q,O} is called BRST commutator. The energy-momentum
tensor Tαβ is defined as the change in action under smooth deformations of the metric.

δgS =
1

2

∫
M

dnx
√
gδgαβTαβ (1)

We assume throughout that the functional measure in the path integral is both Q-
invariant and metric independent. If it is not the case, we have to check for metric
anomalies which is outside the scope of this report.

A topological field theory (TFT) is characterized by following :

• Collection of fields defined on a Riemannian manifold(M,g)

• A nilpotent operator which is Grassmann odd

• Physical states are in Q-cohomology class.

• Energy-momentum tensor is Q-exact i.e

Tµν = QGµν

1This means that f and f−1 are continuous mappings
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Q is referred to as ‘BRST charge’ (also BRST operator) and the Grassmann grading
corresponds to the ghost number.

In general, Q is metric independent and is the simplest situation. However, there are far
more interesting cases where Tαβ is BRST commutator even when Q fails to be metric
independent (SUSY QM and Sigma models). There also exists cases where Tαβ is not
even a BRST commutator, though, it is possible even then, sometimes, to establish the
topological nature.
Let’s consider the change in the partition function :

Z =

∫
Dφe−Sq (2)

under an infinitesimal change in the metric, we get :

δgZ =

∫
Dφe−Sq

(
−1

2

∫
M

dnx
√
gδgαβTαβ

)
=

∫
Dφe−Sq

(
−1

2

∫
M

dnx
√
gδgαβQGαβ

)
=

∫
Dφe−SqQχαβ = 〈Qχαβ〉 = 0

where, χ = −1
2

∫
M
dnx
√
gδgαβGαβ. We have just used the fact that vacuum is BRST

invariant. This means that the partition function does not depend on the local structure
of the manifold : Z is a topological invariant.

S(φ) =

∫
ddx
√
g [gµν∇µφ∇νφ] (3)

where gµν is the Riemannian metric and ∇ is the covariant derivative.

We can define the energy-momentum tensor as :

Tµν =
δS

δgµν

We can now write it as 2 :

〈Tµν〉 =
1

Z

∫
Dφ

(
δS

δgµν

)
exp

[
−S(φ)

~

]
〈Tµν〉 = 0

Having established that the metric variation of the partition function vanishes,and in
turn that the energy-momentum tensor is zero, we now look whether we have other
metric independent correlation functions in the theory ?

2Using the fact that Z is already independent of metric
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We need to examine the presence of other metric independent correlation functions
in the theory. Let’s start by considering the vacuum expectation value of an observable
:

〈O〉 =

∫
DΦe−SO(Φ)

We have to derive the conditions for this execration value to be zero.

δ〈O〉 =

∫
DΦe−S(δgO − δgSq · O) (4)

Assume that O satisfies the following properties :

δgO = QT , QO = 0

for some T, we then have :
It is interesting to note that even though χ which depends on Vαβ contains metric

dependence, we have wrapped it up in form of BRST commutator and still have metric
independence.
TFT can be classified in two types : 1. Schwarz type 2. Cohomological type (Witten-
type).

1.2 Schwarz Type

The classical action is explicitly independent of the metric. Chern-Simons theory is a
prototype of this class of topological field theories introdced by Witten in 1980’s. The
metric independence implies that the classical stress-energy tensor of TFT vanishes.In
addition, even the quantum stress-energy tensor vanishes because of the fact that the
remaining part of quantum action has been recasted as a BRST commutator. δS

δgµν
=

Tµν = 0. The alternate cases where the classical action depends explicitly on metric is
not dealt here. It is also clear from the equation below that the quantum action for
Schwarz type theories do not enjoy the property that the quantum action is Q-exact.

Sq(φ, g) = Sc(φ) +QV (φ, g)

1.3 Witten Type

In Witten-type topological field theories, the topological invariance is more subtle.
The lagrangian generally depends on the metric explicitly, but one shows that the
expectation value of the partition function and special classes of correlation functions
are diffeomorphism 3 invariant.

The important characteristic of Witten-type theory is that the quantum action Sq,
which comprised the classical action plus all necessary gauge fixing and ghost terms,
can be written as BRST commutator i.e.,

3Roughly speaking, this means that they are metric independent
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Sq = QV

for some functional V (φ, g) of the fields and Q is nilpotent.
If we consider a conventional gauge field theory, for example Yang-Mills theory and

especially the BRST symmetry, we know that corresponding to a local symmetry one
can construct a BRST operator Q, which is nilpotent i.e Q2 = 0. The field content is
given by Φ and the variation of any functional of the fields Φ is denoted by δO = Q,O.

It is well established that global supersymmetric theories possess a topological in-
variant ∆ = nB − nF , which measures the difference between the number of bosonic
and fermonic zero energy states. We will see that there exists a intimate connection
between the index and the Nicolai map. The index turns out to the the winding number
4 of the map.
In theories with a global supersymmetry there exists a mapping (generally, non-local) of
the bosonic fields whose determinant cancels the Pfaffian (Salam-Mathews determinant)
of the fermionic fields present. This existence of the ‘Nicolai Map’ is central to the
idea of implementing models in a SUSY preserving way on lattice. In fact, as shown
in [?] it is also possible to formulate supersymmetry on a discrete space time lattice by
preserving Nicolai map as substitute to SUSY algebra. Let us consider the SUSY QM
Lagrangian :

L =
1

2

(
dφ

dt

)2

+
1

2
P ′(φ)2 + ψi

dψi
dt

+ iψ1ψ2P
′′(φ)

where P (φ) is a super potential.
If we consider the mapping (called ‘Nicolai mapping’) from φ to ξ as ,

ξ =
dφ

dt
+ P ′(φ)

,

We observe that the Jacobian of this change of variables i.e δξ
δφ

exactly cancels the
fermionic determinant and thus the effective lagrangian for ξ becomes gaussian except
a total derivative term that can be neglected owing to periodic boundary conditions.
The partition function then takes the form,

Z =

∫
Dξ e−

∑
x ξ

2/2 (5)

This has an immediate advantage. T he form of the super potential has disappeared
from ‘Z’ and hence it cannot depend on any coupling constants in the model. It is
topologically invariant. It is therefore clear, that the existence of local Nicolai map is
intimately related to the presence of a topological symmetry.

4Number of times the map covers the space of functions
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2 Supersymmetry

The Coleman-Mandula theorem clearly meant that there was no non-trivial way of
mixing particles with integer and half-integer spin. Wess and Zumino discovered field
theoretic models with this extended symmetry (called ’supersymmetry’) which con-
nects Bose and Fermi fields and are generated by charge transforming like spinors
under Lorentz group (supercharges). These supercharges give rise to a new system of
commutation and anti-commutation relations, which is not precisely a Lie algebra but a
graded algebra. This has a Z2 grading. In 1975, Haag, Lopuszanski & Sohnius showed
that the energy-momentum operators appear among the elements of this pseudo Lie
algebra which hints that the fusion between internal and space-time symmetries must
exist.

As it turns out, supersymmetry is the only non-trivial extension of Poincaré symme-
try that is compatible with the general principles of relativistic quantum field theory.

2.1 Extending the algebra

Supersymmetry enlarges the Poincaré algebra by including spinor supercharges :

I = 1, ....N

{
QI
α α = 1, 2 ; Left Spinor

Q̄α̇I = (QI
α)† ; Right Spinor

(6)

Here, α is a spinor label, and N is the number of independent supersymmetries of
the algebra.
The Poincaré generators P µ and Mµν are bosonic generators. In supersymmetry, we
have added sponsorial generators QL

α, Q̄M
β , where L, M = 1,2,...N . The N = 1 case is

simple supersymmetry and N > 1 is extended supersymmetry.
The complex spinorial generators follow the following algebra :

{QL
α, Q

M
β } = εαβZ

LM

[P,Q] = 0

[QL
α,Mµν ] =

1

2
(σµν)α

βQL
β

{QL
α, Q̄

M
β } = δLMσµαβPµ (7)

The last one is the most interesting of these four. It roughly means that the su-
persymmetric generators are square root of the four-momentum. It also means that
combining two supersymmetric transformations (one of each helicity) corresponds to
space-time translation. Also, in our discussion we neglect any central charges denoted
by Z in the first equation. That then reduces to,
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{QL
α, Q

M
β } = 0

Note in passing that Z’s are anti-symmetric and commute with all the generators
of the supersymmetric algebra. Hence, they are also called as central charges. In case
of N = 1 SUSY, this vanishes. R-symmetry is a global symmetry that transforms the
supercharges in a supersymmetric theory. Gauging the global symmetry of a physical
system involves introducing new degrees of freedom, referred to as gauge fields, to make
the system invariant under localized actions of the symmetry transformation.

2.2 Twisted Supersymmetry

In the 80’s, Witten noticed that supersymmetry has a deep relation to topology. The
simplest example of such a relation is supersymmetric quantum mechanics, which pro-
vides a physical reformulation of Morse theory. Their relation is not obvious because as
the degrees of freedom in a topological field theory of Witten type and supersymmetric
theory is very different. Witten-type theories have no physical degrees of freedom but
the supersymmetric theories have them. Their relation becomes more apparent when
we follow a procedure referred to as ‘twisting’. This twisting procedure can be viewed
as a modification of Lorentz transformation properties. The main purpose is to define a
supersymmetric theory on a general Riemannian manifold. This process leads to atleast
one scalar supercharge unlike the spinor we have before the twisting. The twisting can
be done through different methods based on how we embed the spin connection in the
R-symmetry group of the extended supersymmetric theory.

The internal symmetry group of the N = 2 SUSY is given by : U(1)I × SU(2)I . This is
the R-symmetry in supersymmetric theories. And the global symmetry group of N = 2
SUSY in 4-d is : SU(2) × SU(2) × U(1)I × SU(2)I , where the first two are Euclidean
rotation group and last two are isospin rotation group.

The twist consists as considering the rotation group as : SU(2)
′
L × SU(2)R ×, where

SU(2)’ is the diagonal subgroup of SU(2)L × SU(2)I

Roughly speaking, in the twisting procedure one first selects one of the two compo-
nents of the rotation group and then replaces it by the diagonal sum of that component
with a SU(2) subgroup of the internal group 5. In the case of N = 2 this can be done
in only one way while for N = 4 there are three possibilities due to Marcus, Vafa &
Witten.

3 Covariant Quantization : Special & General Case

Most of the theoretical models describing fundamental interactions have gauge freedom.
In the path integral approach, it is necessary to ”gauge fix” them to ensure that we

5So now, for every rotation in euclidean space, we do a similar rotation in isospin space
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don’t integrate over unphysical or spurious degrees of freedom. In most of the models,
this (gauge invariance) is implemented by BRST procedure. But, there is another,
and infact more general formalism which can do this fixing while preserving space-time
covariance. It is called BRST-antifield or Batalin-Vilkovisky (BV) formalism. When it
comes to the quantization of gauge theories in a lagrangian formalism, the framework of
Batalin - Vilkovisky (BV)[6][7][8] appears to be superior to all other available schemes.
Not only is this easy to implement but it gives for free, a new canonical structure
contained in what is known as the antibracket. With the help of this, the definition of
a gauge-fixed quantum action can be formulated by means of one equation known as
the ’master equation’.In attempts to unify all fundamental particles and interactions in
nature, supergravity models have turned out to be serious candidates for a consistent
quantum theory. In most of these supergravity theories, the corresponding graded
algebra is closed only modulo the classical equations of motion (i.e closed only on-shell).
As a consequence BRST invariance of the effective action constructed is lost. This is
not the case for standard Yang-Mills theories since they have a closed gauge algebra.
The antifield-BRST formalism is capable of handling all the gauge structures, while the
original method was devised only for off-shell closed, irreducible gauge algebras. This
wide range of application of the antifield formalism is one of its main virtues. Note that
we will refer to the antifield formalism, antifield-BRST and BV formalism to denote
the same procedure at different places[9].

3.1 Algebras & Irreducibility

The need for an alternate approach is related to the fact of how the gauge algebras of
theories behave. We say that the gauge algebra closes off shell (i.e closed gauge algebra)
if the commutator of two gauge transformations (δ1Φi = Ri

αζ
α
1 and δ2Φi = Ri

αξ
α
2 ) is

again a linear combination of originally introduced gauge transformations denoted by :

[δ1, δ2]Φi = fγαβR
i
γξ
α
2 ξ

β
1

The case where they are dependent constitutes the class of open gauge algebras which
only closes on-shell. Now, let’s talk about the reducibility of these gauge theories.

We start with a classical action Sc(Φ
i) which depends on some fields, denoted by Φi

with the local symmetry transformations :

δΦi = Ri
α(Φ)εα (8)

Here, εα denotes the local infinitesimal parameters 6 . If δΦi = 0 for some non-zero
εα, then the transformations in Eq.(8) are referred to as ‘first stage reducible’ or just
reducible. One can also describe this as a situation where the gauge algebra has zero
modes. It is then apparent that if one gauge fixed the theory according to Faddeev-
Popov, the determinant will have zero modes. This, then, behaves like a residual

6Using De-Witt’s condensed notation. See Appendix A
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gauge symmetry in the ghost action. We need to further fix this term by introducing
’ghost-for-ghost’ phenomenon. It is in this case that to incorporate all the terms it is
possible to resort to the Batalin-Vilkovisky machinery, which is guaranteed to produce
a BRST invariant quantum action, together with an on-shell nilpotent BRST charge Q.
Moreover, it may also turn out that the residual gauge symmetry of the ghost action
itself has a zero mode ; if this is the case, the theory is said to be ‘second stage reducible’
and so on. Alternatively, if δΦi = 0 implies that εα = 0, then the transformations in
Eq.(8) are referred to as ‘irreducible’, which means that they are on-shell independent.

The Batalin-Vilkovisky (BV) procedure constructs an action which is suitable for quan-
tization while maintaining proper gauge invariances. BRST symmetry can be retrieved
from this and most of the properties follow from the fact that this operator is nilpotent.
The price we pay for achieving nilpotent nature of BRST operator is by doubling the
initial degrees of freedom by introducing antifields.

(S, S) =
∂rS

∂ΦA

∂lS

∂Φ∗A
− ∂rS

∂Φ∗A

∂lS

∂ΦA

(9)

Here, ∂r and ∂l denote the right and left derivatives, respectively. We will explicitly
explain the meaning of these derivatives in the next part.

3.2 Batalin-Vilkovisky formalism

Let Z be any superspace. The superspace Z
⊕

Z∗ is naturally endowed with an odd
non-degenerate (degree -1) pairing. Let ∆ be the Laplace operator associated to this
pairing. If χi are coordinates on Z (the fields) and χ∗i are the corresponding coordinates
on Z∗ (the antifields), then we have :

∆ =
∂

∂χ+
i

∂

∂χi

The operator ∆ is called the Batalin-Vilkovisky Laplacian (it is odd and of order
2) ; note that, if Φ is a homogeneous function in then ∆Φ is also homogeneous and
∆Φ = Φ + 1 mod 2.

The classical master equation for even degree (degree +1) element S (called action)
of a Batalin-Vilkovisky algebra is the equation :

∆2 = 0
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Indeed,

∆2 =
∂

∂χ∗i

∂

∂χi
∂

∂χ∗j

∂

∂χj

= (−1)χ
i·χ∗j+χi·χj∗χ∗i ·χ∗j+χ∗i ·χj

∂

∂χ∗j

∂

∂χj
∂

∂χ∗i

∂

∂χi

= (−1)(χi+χ∗i )(χj+χ∗j ) ∂

∂χ∗j

∂

∂χj
∂

∂χ∗i

∂

∂χi
.

Since the variables χi and χ∗i have opposite parity, χi + χ∗i mod 2 = 1, for any i.
Therefore,

∆2 = −∆2

i.e., ∆2 = 0. The cohomology of superspace with respect to the BV-Laplacian is called
BV-cohomology or ∆-cohomology.

Let us consider Φ and Ψ be two homogenous function on the superspace. Then,

∆(Φ ·Ψ) =
∂

∂χ+
i

∂

∂χi
(Φ ·Ψ)

=
∂

∂χ+
i

(
∂Φ

∂χi
·Ψ + (−1)χ

i·ΦΦ
∂Ψ

∂χi

)
=

∂

∂χ+
i

∂Φ

∂χi
·Ψ + (−1)(χi+Φ)χ+

i
∂Φ

∂χi
∂Ψ

∂χ+
i

+ (−1)χ
i·Φ ∂Φ

∂χ+
i

∂Ψ

∂χi
+

+ (−1)(χi+χ+
i )ΦΦ

∂

∂χ+
i

∂Ψ

∂χi

= (∆Φ) ·Ψ + (−1)Φ{Φ,Ψ}+ (−1)ΦΦ ·∆Ψ

where {Φ,Ψ} is the so-called BV-bracket, defined by

{Φ,Ψ} = (−1)χ
+
i ·Φ

∂Φ

∂χ+
i

∂Ψ

∂χi
− (−1)(Φ+1)(Ψ+1)+χ+

i ·Ψ
∂Ψ

∂χ+
i

∂Φ

∂χi

The BV-bracket is best expressed using left and right derivatives : for a homogeneous
vector v in Z

⊕
Z∗, set

−→
∂ vΦ = ∂vΦ
←−
∂ vΦ = (−1)v·Φ∂vΦ

−→
∂ denotes the right derivative and

←−
∂ denotes the left in Eq.(9) and with these nota-

tions, the BV-bracket reads

{Φ,Ψ} =

←−
∂ Φ

∂χ+
i

−→
∂ Ψ

∂χi
− (−1)(Φ+1)(Ψ+1)

←−
∂ Ψ

∂χ+
i

−→
∂ Φ

∂χi
(10)

It can be easily checked that when Φ and Ψ both have bosonic character then Eq.9 is
implied directly.
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3.3 Derivation of Quantum Master Equation

At the quantum level, the action S can be replaced by a quantum action W = S +∑
i ~iMi, where the M’s are a contribution due to the measure of the path integral.

For the transition amplitude to be independent of field variables, we must have that
exp i

~W should be ∆ -closed.

∆ exp
i

~
W = 0 (11)

We can easily conclude using ;

∆(αβ) = α∆β + (−)εβ(∆α)β + (−)εβ(α, β) (12)

that the following holds,

i~∆W =
1

2
(W,W ) (13)

Note that when the change in action i.e ∆S = 0, we can taken W = S.
We note that Eq.(13) is the cornerstone of this formalism and is known as ”quantum
master equation”. It ensures that the transition integral is independent of the choice
of Ψ.

The solution S of the master equation is the key to this formalism. It can indeed
be written explicitly for some cases like Yang-Mills. In these cases, the solution is
linear in the anti-fields. In gauge systems with ’open” algebra i.e for which the gauge
transformations only close only on-shell, or for on-shell reducible gauge theories, the
solution of the master equation is more complicated and can possibly contain terms
which are non-lines in anti fields.

It has been known for several years that the anomalies are related to the non-
invariance of the functional measure of the path integral under BRST symmetries. In
fact, one interesting case where the quantum master equation is violated is indeed in
the case of anomalies [2]. Following this, Eq.11 gets modified to :

i~∆W − 1

2
(W,W ) = ~aνcν +O~2 (14)

Troost et.al showed that the BV formalism provides a suitable setting to discuss anoma-
lies.

S =

∫
dτ

[
gij(u)

(
dui

dτ

duj

dτ
+ iψ̄i

Dψj

Dτ

)
+

1

4
Rijklψ̄

iψkψ̄iψl − gij(u)
∂V

∂ui
∂V

∂uj
− D2V

DuiDuj
ψ̄iψj

]
(15)

We consider the superparticle on a Riemannian manifoldM in an arbitrary potential
V.

Here, ui are the coordinates of the Riemannian manifold with metric and curvature
denoted by gij and Rijkl and the ψi are the Grassmann odd coordinates of the particle.
The covariant derivative is given by :
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D

Dτ
=
x

j

A De Witt’s notation

This notation[10] is used to write the gauge transformations in more compact form :

δεϕ
i = Ri

αε
α 7→ δεϕ

i(x) =

∫
dnyRi

α(y, x)εα(y) (16)

For ex: the transformation of the Yang-Mills gauge field

δεA
a
µ = Dµε

a = ∂µε
a + facbA

b
µε
c (17)

can be written as ,

δεA
a
µ = Ra

µbε
b , Ra

µbε
b(x, y) = ∂µδ(x− y)δab + facbA

b
µδ(x− y) (18)
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