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Abstract
These notes cover some basic ideas and theory behind the field of machine learning. These notes
are by no means even close to being exhaustive and simply meant for quick reference and interview
preparation. Partly inspired by the amazing 100-page textbook.2
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Section 1

Introduction

“I have no data yet. It is a capital mistake to theorise before one has data. Insensibly one
begins to twist facts to suit theories, instead of theories to suit facts.” – Sherlock Holmes, A
Scandal in Bohemia

It is no exagerration to say that all aspects of human life is related to data. It is then an
interesting question to ask: how much the machine can learn and think like humans using that
data. These questions all belong to the field of artificial intelligence (AI).

Machine learning (ML) originally emerged as a sub-discipline of AI research which tries to
accomplish task using computers without explicitly programming them. A sub-field of ML is deep
learning, whose goal is to mimic neural networks in our brain and enable computer to function
similarly.

What we buy, what we buy online and many others are all data-driven and uses machine
learning (ML) methods. What movies are recommended to you on Netflix or what Amazon rec-
ommends you to buy in bundle are all determined by various algorithms of ML. The pricing of
airline tickets and the web history or what links you visit all determines what you are being shown
online and how much you pay.

These notes are a brief introduction to the fundamentals and methods used in machine learning.
Usually, ML is classified into three parts: Supervised, Unsupervised, Reinforcement learning. The
canvas of ML is shown in Fig. 1.

Machine Learning is a subfield of Data Science that deals with using existing data to help
systems automatically learn new skills to perform different tasks without having rules to be ex-
plicitly programmed. Deep Learning, on the other hand, is a field in Machine Learning that deals
with building Machine Learning models using algorithms that try to imitate the process of how
the human brain learns from the information in a system for it to attain new capabilities. In Deep
Learning, we make heavy use of deeply connected neural networks with many layers.
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Figure 1. A cartoon showing the landscape of machine learning.

Section 2

Some famous ML algorithms

Some popular ML algorithms are:

• Linear regression: This gives a relationship between input x and an output variable y, also
referred to as independent and dependent variables. Consider an example where you are
required to arrange a few plastic boxes of different sizes on separate shelves based on their
corresponding weights. The task is to be completed without manually weighing the boxes.
Instead, you need to guess the weight just by observing the height, dimensions, and sizes
of the box. In short, the entire task is driven based on visual analysis. Thus, you have
to use a combination of visible variables to make the final arrangement on the shelves.
Linear regression in machine learning is of a similar kind, where the relationship between
independent and dependent variables is established by fitting them to a regression line. This
line has a mathematical representation given by the linear equation y = wx + c, where y

represents the dependent variable, w = slope, x = independent variable, and b = intercept.
We need to find the best fit by minimizing the errors using Ordinary Least Squares (OLS)
as:

Min.
N∑

i=1
(yi − wixi) (2.1)

• Logistic regression: The dependent variable is of binary type (dichotomous) in logistic regres-
sion. This type of regression analysis describes data and explains the relationship between
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one dichotomous variable and one or more independent variables. Logistic regression is used
in predictive analysis where pertinent data predict an event probability to a logit function.
Thus, it is also called logit regression. Mathematically, logistic regression is represented by
the equation:

y = exp(b0 + b1x)/1 + exp(b0 + b1x)) (2.2)

where x = input value, y = predicted output, b0 = bias or intercept term, b1 = coefficient
for input x. Logistic regression could be used to predict whether a particular team will
win (1) a tournament or not (0), or whether a lockdown will be imposed (1) due to rising
COVID-19 cases or not (0) or whether a tumor is benign or not. Thus, the binary outcomes
of logistic regression facilitate faster decision-making as you only need to pick one out of the
two alternatives.

• Decision trees: With a decision tree, you can visualize the map of potential results for a
series of decisions. It enables companies to compare possible outcomes and then take a
straightforward decision based on parameters such as advantages and probabilities that are
beneficial to them. Decision tree algorithms can potentially anticipate the best option based
on a mathematical construct and also come in handy while brainstorming over a specific
decision. The tree starts with a root node (decision node) and then branches into sub-nodes
representing potential outcomes. Each outcome can further create child nodes that can
open up other possibilities. The algorithm generates a tree-like structure that is used for
classification problems. For example, consider the decision tree below that helps finalize a
weekend plan based on the weather forecast.

Gradient Boosting is similar to AdaBoost (Adaptive Boost) in that they both use an ensemble
of decision trees to predict a target label. However, unlike AdaBoost, the Gradient Boost trees
have a depth larger than 1. In practice, you’ll typically see Gradient Boost being used with a
maximum number of leaves of between 8 and 32. We know that error = bias + variance.
Boosting is based on weak learners i.e., high bias and low variance. In terms of decision trees,
weak learners are shallow trees, sometimes even as small as decision stumps (trees with two
leaves). Boosting reduces error mainly by reducing bias (and also to some extent variance, by
aggregating the output from many models). On the other hand, Random Forest uses as you
said fully grown decision trees (low bias, high variance). It tackles the error reduction task
in the opposite way: by reducing variance. The trees are made uncorrelated to maximize the
decrease in variance, but the algorithm cannot reduce bias (which is slightly higher than the
bias of an individual tree in the forest). Hence the need for large, unpruned trees, so that
the bias is initially as low as possible. Please note that unlike Boosting (which is sequential),
RF grows trees in parallel.

In addition, the random forest approach is a bagging method where deep trees, fitted on
bootstrap samples, are combined to produce an output with lower variance.

Random Forest is an ensemble learning method that creates multiple decision trees and
combines their predictions to make a final prediction. In random forest, each decision tree
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is built on a randomly selected subset of the training data, and a randomly selected subset of
features is used for each tree. This helps to reduce overfitting and increase the accuracy of
the model.

Gradient Boosting, on the other hand, is also an ensemble learning method that combines
multiple weak learners to make a strong learner. In Gradient Boosting, a sequence of decision
trees is built, where each tree tries to correct the errors of the previous tree. The algorithm
starts by building a simple model (say mean in regression problems) and then gradually
improves it by adding more complex models. Gradient Boosting typically requires more
training time than Random Forest, but it can often achieve higher accuracy.

In summary, the main differences between Random Forest and Gradient Boosting are:

– Random Forest builds multiple decision trees independently, while GB builds a sequence
of decision trees, where each tree tries to correct the errors of the previous tree.

– Random Forest uses random subsets of data and features to build each tree, while GB
uses all the data but focuses on the instances that were misclassified by the previous
trees.

– Random Forest is less prone to overfitting, while Gradient Boosting can overfit if the
number of trees or their complexity is too high.

– Random Forest is typically faster to train than Gradient Boosting, but Gradient can
achieve higher accuracy.

• Support Vector Methods: Support vector machine algorithms are used to accomplish both
classification (SVM, M for Machine) and regression (SVR, R for regression) tasks. With
SVR, we can then give our model some flexibility in finding the predicted values, as long
as the error is within that range. In contrast to OLS discussed above in Linear regression,
the objective function of SVR is to minimize the coefficients — more specifically, the norm
of the coefficient vector — not the squared error. The error term is instead handled in the
constraints, where we set the absolute error less than or equal to a specified margin, called
the maximum error, ϵ. We can tune epsilon to gain the desired accuracy of our model. Our
new objective function and constraints are as follows:

Min.|w|2 (2.3)

with contraints: |yi − wixi| ≤ ϵ. We can add another hyperparameter ξ. This is called a
slack variable and the idea is simple – for any value that falls outside of ϵ, we can denote
its deviation from the margin as ξ. We know that these deviations have the potential to
exist, but we would still like to minimize them as much as possible. Thus, we can add these
deviations to the objective function.

Min.|w|2 + C
N∑

i=1
|ξi| (2.4)
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with contraints: |yi − wixi| ≤ ϵ + |ξi|. These are supervised machine learning algorithms
that plot each piece of data in the n-dimensional space, with n referring to the number
of features. Each feature value is associated with a coordinate value, making it easier to
plot the features. Moreover, classification is further performed by distinctly determining the
hyper-plane that separates the two sets of support vectors or classes. A good separation
ensures a good classification between the plotted data points. In short, SVMs represent the
coordinates for individual observations. These are popular machine learning classifiers used
in applications such as data classification, facial expression classification, text classification,
steganography detection in digital images, speech recognition, and others.

SVM often admits the kernel trick. Kernels are used in SVM to map the original input data
into a higher-dimensional space where it will be easier to find patterns in the data and train
the model with better performance (or making the data more linear!). If we have binary
class data like a half-moon patterns of blue and red, when plotted in 2D space, a linear SVM
kernel will not be able to differentiate the two classes well but we can use RBF (radial basis
function) kernel which maps the data into a particular higher-dimensional space where the
two classes are clearly separable.

Typically without the kernel trick, in order to calculate support vectors and support vector
classifiers, we need first to transform data points one by one to the higher dimensional
space, and do the calculations based on SVM equations in the higher dimensional space,
then return the results. The ‘trick’ in the kernel trick is that we design the kernels based on
some conditions as mathematical functions that are equivalent to a dot product in the higher
dimensional space without even having to transform data points to the higher dimensional
space. i.e we can calculate support vectors and support vector classifiers in the same space
where the data is provided which saves a lot of time and calculations.

• Naive Bayes: This refers to a probabilistic machine learning algorithm based on the Bayesian
probability model and is used to address classification problems. The fundamental assump-
tion of the algorithm is that features under consideration are independent of each other and
a change in the value of one does not impact the value of the other. For example, you can
consider a ball, a cricket ball, if it is red, round, has a 7.1-7.26 cm diameter, and has a mass
of 156-163 g. Although all these features could be interdependent, each one contributes to
the probability that it is a cricket ball. This is the reason the algorithm is referred to as
‘naïve’. Each variable in the dataset is independent of the other. This kind of assumption
is unrealistic for real-world data. However, even with this assumption, it is very useful for
solving a range of complicated problems, e.g., spam email classification, etc. Let’s look at
the mathematical representation of the algorithm. If X, Y = probabilistic events, P (X) =
probability of X being true, P (X|Y ) = conditional probability of X happening in case Y has
occured. Then, Bayes’ theorem is given by the equation:

P (X|Y ) = P (Y |X)P (X)
P (Y ) (2.5)
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A naive Bayesian approach is easy to develop and implement. It is capable of handling
massive datasets and is useful for making real-time predictions. Its applications include
spam filtering, sentiment analysis and prediction, document classification, and others.

• kNN (k Nearest Neighbor): KNN algorithm is used for both classification and regression
problems. It stores all the known use cases and classifies new use cases (or data points)
by segregating them into different classes. This classification is accomplished based on the
similarity score of the recent use cases to the available ones. KNN is a supervised machine
learning algorithm, wherein ‘K’ refers to the number of neighboring points we consider while
classifying and segregating the known n groups. The algorithm learns at each step and
iteration, thereby eliminating the need for any specific learning phase. The classification
is based on the neighbor’s majority vote. The algorithm uses these steps to perform the
classification: For a training dataset, calculate the distance between the data points that
are to be classified and the rest of the data points. Choose the closest ‘K’ elements based
on the distance or function used. Consider a ‘majority vote’ between the K points–the class
or label dominating all data points reveals the final ranking. The real-life applications of
KNN algorithms include facial recognition, text mining, and recommendation systems such
as Amazon, Netflix, and others. This algorithm is known as instance-based learning. These
work by memorising the training dataset. The term “non-parametric” refers to not making
any assumptions on the underlying data distribution. These methods do not have any fixed
numbers of parameters in the model. Similarly in KNN, the model parameters grow with
the training data by considering each training case as a parameter of the model. KNN is a
non-parametric algorithm. If KNN is used for a regression problem, the mean (or median) of
the y variables of the K closest observations will be used for predictions. If KNN is used for
a classification problem, it’s the mode (the value that appears most often) of the variables y
of the K closest observations that will be used for predictions. The basic steps are as follows:

Use a value of N and do the following for every new sample we want to classify:

– Calculate the distance with every sample from the dataset.

– Pick the N closest samples from the dataset.

– Returns the mode of the labels of those N samples OR the mean (or median).

• k-Means: This is a distance-based unsupervised machine learning algorithm that accom-
plishes clustering tasks. In this algorithm, you classify datasets into clusters (K clusters)
where the data points within one set remain homogenous, and the data points from two
different clusters remain heterogeneous.

The clusters under k-Means are formed using these steps:

1. Initialization: The k-means algorithm selects centroids for each cluster (k number
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of points).

2. Assign objects to centroid: Clusters are formed with the closest centroids (k clus-
ters) at each data point.

3. Centroid update: Create new centroids based on existing clusters and determine
the closest distance for each data point based on new centroids. Here, the position
of the centroid also gets updated whenever required.

4. Repeat: Repeat the process till the centroids do not change.

K-Means clustering is useful in applications such as clustering Facebook users with common
likes and dislikes, document clustering, segmenting customers who buy similar ecommerce
products, etc.

Clusters are evaluated based on some similarity or dissimilarity measure such as the distance
between cluster points. If the clustering algorithm separates dissimilar observations apart
and similar observations together, then it has performed well. The two most popular metrics
evaluation metrics for clustering algorithms are:

Silhouette score: It measures the similarity of observation to its own cluster compared to
other clusters. The score ranges from -1 to 1, with values closer to 1 indicating a stronger
clustering structure. Calinski-Harabasz Index: It measures the ratio of the between-cluster
variance to the within-cluster variance. Higher values indicate a better clustering solution.
Davies-Bouldin Index: It measures the average similarity between each cluster and its most
similar cluster. Lower values indicate a better clustering solution. Adjusted Rand Index: It
measures the similarity between the true class labels and the predicted cluster labels, adjusted
for the chance. Higher values indicate a better clustering solution. Confusion matrix: It can
be used to evaluate the accuracy of clustering models by comparing the predicted clusters to
the true classes.

Dunn’s Index:

min.min.
( δ(Xi, Xj)

max.∆Xk

)
intercluster distance, intracluster (within cluster) is given by ∆Xk.

• Random forest: Random forest algorithms use multiple decision trees to handle classifica-
tion and regression problems. It is a supervised machine learning algorithm where different
decision trees are built on different samples during training. These algorithms help estimate
missing data and tend to keep the accuracy intact in situations when a large chunk of data
is missing in the dataset. Random forest algorithms follow these steps:

1. Select random data samples from a given data set.
2. Build a decision tree for each data sample and provide the prediction result for each

decision tree.
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3. Carry out voting for each expected result.

4. Select the final prediction result based on the highest voted prediction result.

This algorithm finds applications in finance, ecommerce (recommendation engines), compu-
tational biology (gene classification, biomarker discovery), and others. It uses the random
subspace method, also called attribute bagging or feature bagging. It is an ensemble learn-
ing method that attempts to reduce the correlation between estimators in an ensemble by
training them on random samples of features instead of the entire feature set.

Side Note: Bagging is an ensemble learning method. It stands for bootstrap aggregating.
In this technique, we generate some data using the bootstrap method, in which we use an
already existing dataset and generate multiple samples of the N size. This bootstrapped
data is then used to train multiple models in parallel, which makes the bagging model more
robust than a simple model. Once all the models are trained, when it’s time to make a
prediction, we make predictions using all the trained models and then average the result in
the case of regression, and for classification, we choose the result, generated by models, that
have the highest frequency (or majority voting).

There are primarily three different types of neural networks algorithms in deep learning (DL)
that form the basis for most pre-trained models in DL:

• Artificial Neural Networks (ANN): Artificial neural networks are machine learning algorithms
that mimic the human brain (neuronal behavior and connections) to solve complex problems.
ANN has three or more interconnected layers in its computational model that process the
input data. The first layer is the input layer or neurons that send input data to deeper
layers. The second layer is called the hidden layer. The components of this layer change
or tweak the information received through various previous layers by performing a series of
data transformations. These are also called neural layers. The third layer is the output
layer that sends the final output data for the problem. ANN algorithms find applications in
smart home and home automation devices such as door locks, thermostats, smart speakers,
lights, and appliances. They are also used in the field of computational vision, specifically in
detection systems and autonomous vehicles.

• Convolution Neural Networks (CNN): Convolutional neural networks (CNN) are all the rage
in the deep learning community right now are being used across different applications and do-
mains, and they’re especially prevalent in image and video processing projects. They mostly
deal with two-dimensional objects (height and width of image). Used in image recognition,
face detection, image analysis etc.

• Recurrent Neural Networks (RNN): Recurrent neural networks refer to a specific type of ANN
that processes sequential or temporal data. Here, the result of the previous step acts as the
input to the current step. This is facilitated via the hidden state that remembers information
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about a sequence. It acts as a memory that maintains the information on what was previously
calculated. The memory of RNN reduces the overall complexity of the neural network. RNN
analyzes time series data and possesses the ability to store, learn, and maintain contexts of
any length. RNN is used in cases where time sequence is of paramount importance, such as
speech recognition, language translation, video frame processing, text generation, and image
captioning. RNNs are a kind of feedforward network, in which information from one layer
passes to another layer, and each node in the network performs mathematical operations
on the data. These operations are temporal, i.e., RNNs store contextual information about
previous computations in the network. It is called recurrent because it performs the same
operations on some data every time it is passed. However, the output may be different based
on past computations and their results. Useful in speech recognition, text translation, NLP
etc. Unlike CNN, they can have different input and output sizes.

GNN: Graph neural networks (GNNs) to solve graph prediction tasks. A GNN is an opti-
mizable transformation on all attributes of the graph (nodes, edges, global-context) that preserves
graph symmetries (permutation invariances).

2.1 Exploratory Data Analysis (EDA)

EDA is a crucial step in the data science process. We can have numerical or categorical data. CD
can further be of ordinal (size of shirt: L, XL, XXL) or nominal type (color of shirt: Blue, Green,
Red). We can convert categorical into numerical data using two common methods: 1. Integer
encoding, 2. One-Hot Encoding.

In integer encoding, ach unique category value is assigned an integer value. For example, ‘red’
is 1, ‘green’ is 2, and ‘blue’ is 3. This is called a label encoding or an integer encoding and is easily
reversible. For some variables, this may be enough. Ordinal variables like the example above would
be a good example where a label encoding would be sufficient.

For categorical variables where no such ordinal relationship exists, the integer encoding is
not enough. Using this encoding and allowing the model to assume a natural ordering between
categories may result in poor performance or unexpected results (predictions halfway between
categories). In this case, a one-hot encoding can be applied to the integer representation. This is
where the integer encoded variable is removed and a new binary variable is added for each unique
integer value.

In the “color” variable example, there are 3 categories and therefore 3 binary variables are
needed. A ‘1’ value is placed in the binary variable for the color and ‘0’ values for the other colors.
For example:

Blue Green Red

1 0 0
0 1 0
0 0 1

(2.6)
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1 # import necessary libraries
2 import pandas as pd
3 import numpy as np
4 import matplotlib.pyplot as plt
5 import seaborn as sns
6

7 # load the dataset
8 df = pd.read_csv("titanic.csv")
9

10 # print the first few rows of the DataFrame
11 print(df.head())
12

13 # print the DataFrame’s shape
14 print(df.shape)
15

16 # print the DataFrame’s data types
17 print(df.dtypes)
18

19 # check for missing values
20 print(df.isnull().sum())
21

22 # visualize the distribution of a numeric column
23 plt.hist(df[’Age’])
24 plt.show()
25

26 # visualize the distribution of a categorical column
27 df[’Sex’].value_counts().plot(kind=’bar’)
28 plt.show()
29

30 # calculate basic statistics for a numeric column
31 print(df[’Fare’].describe())
32

33 # calculate the correlation between two numeric columns
34 print(df[’Fare’].corr(df[’Survived’]))
35

36 # group the data by a categorical column and calculate statistics
37 grouped_df = df.groupby(’Pclass’)[’Survived’].mean()
38 print(grouped_df)
39

40 # create a scatter plot to visualize the relationship between two numeric columns
41 plt.scatter(df[’Age’], df[’Fare’])
42 plt.xlabel(’Age’)
43 plt.ylabel(’Fare’)
44 plt.show()
45

46 # create a box plot to visualize the distribution of a numeric column
47 plt.boxplot(df[’Fare’])
48 plt.ylabel(’Fare’)
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49 plt.show()
50

51 # create a bar plot to visualize the mean of a numeric column for each category of a
categorical column

52 df.groupby(’Sex’)[’Age’].mean().plot(kind=’bar’)
53 plt.ylabel(’Average Age’)
54 plt.show()
55

56 # create a pivot table to summarize the data
57 pivot_table = df.pivot_table(index=’Sex’, columns=’Pclass’, values=’Fare’, aggfunc=’mean’)
58 print(pivot_table)
59

60 # create a heatmap to visualize the pivot table
61 plt.pcolor(pivot_table, cmap=’Reds’)
62 plt.colorbar()
63 plt.show()
64

65 # create a pairplot to visualize the relationships between multiple numeric columns
66 import seaborn as sns
67 sns.pairplot(df, vars=[’Age’, ’Fare’, ’SibSp’])
68 plt.show()
69

70 # create a bar plot to visualize the count of a categorical column
71 df[’Embarked’].value_counts().plot(kind=’bar’)
72 plt.ylabel(’Count’)
73 plt.show()
74

75 # create a countplot to visualize the count of a categorical column by the categories of
another categorical column

76 sns.countplot(x=’Sex’, hue=’Pclass’, data=df)
77 plt.show()
78

79 # create a point plot to visualize the mean of a numeric column by the categories of a
categorical column

80 sns.pointplot(x=’Sex’, y=’Age’, data=df)
81 plt.ylabel(’Average Age’)
82 plt.show()
83

84 # create a violin plot to visualize the distribution of a numeric column by the categories of
a categorical column

85 sns.violinplot(x=’Sex’, y=’Age’, data=df)
86 plt.ylabel(’Age’)
87 plt.show()
88

89 # create a box plot to visualize the distribution of a numeric column by the categories of a
categorical column

90 sns.boxplot(x=’Sex’, y=’Age’, data=df)
91 plt.ylabel(’Age’)
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92 plt.show()
93

94 # create a swarm plot to visualize the distribution of a numeric column by the categories of
a categorical column

95 sns.swarmplot(x=’Sex’, y=’Age’, data=df)
96 plt.ylabel(’Age’)
97 plt.show()
98

99 # create a faceting grid to visualize the distribution of multiple numeric columns by the
categories of a categorical column

100 g = sns.FacetGrid(df, col=’Sex’)
101 g.map(plt.hist, ’Age’)
102 plt.show()
103

104 # create a heatmap to visualize the correlation between multiple numeric columns
105 plt.figure(figsize=(12, 8))
106 sns.heatmap(df.corr(), cmap=’RdYlGn’, annot=True)
107 plt.show()
108

109 # create a lag plot to check for autocorrelation in a numeric column
110 from pandas.plotting import lag_plot
111 lag_plot(df[’Fare’])
112 plt.show()
113

114 # create an autocorrelation plot to visualize the autocorrelation in a numeric column
115 from pandas.plotting import autocorrelation_plot
116 autocorrelation_plot(df[’Fare’])
117 plt.show()
118

119 # create a scatter plot matrix to visualize the relationships between multiple numeric columns
120 from pandas.plotting import scatter_matrix
121 scatter_matrix(df[[’Age’, ’Fare’, ’SibSp’]], alpha=0.2, figsize=(6, 6))
122 plt.show()
123

124 # create a regression plot to visualize the relationship between two numeric columns
125 sns.regplot(x=’Age’, y=’Fare’, data=df)
126 plt.show()
127

128 # create a barplot to visualize the mean of a numeric column by the categories of a
categorical column

129 sns.barplot(x=’Sex’, y=’Age’, data=df)
130 plt.ylabel(’Average Age’)
131 plt.show()
132

133 # create a pointplot to visualize the mean and confidence interval of a numeric column by the
categories of a categorical column

134 sns.pointplot(x=’Sex’, y=’Age’, data=df, ci=95)
135 plt.ylabel(’Average Age’)
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136 plt.show()
137

138 # create a lmplot to visualize the relationship between two numeric columns and the
categories of a categorical column

139 sns.lmplot(x=’Age’, y=’Fare’, hue=’Sex’, data=df)
140 plt.show()
141

142 # create a factorplot to visualize the distribution of a numeric column by the categories of
a categorical column

143 sns.factorplot(x=’Sex’, y=’Age’, data=df)
144 plt.ylabel(’Average Age’)
145 plt.show()
146

147 # create a boxenplot to visualize the distribution of a numeric column by the categories of a
categorical column

148 sns.boxenplot(x=’Sex’, y=’Age’, data=df)
149 plt.ylabel(’Age’)
150 plt.show()
151

152 # create a distplot to visualize the distribution of a numeric column
153 sns.distplot(df[’Fare’])
154 plt.show()
155

156 # create a kdeplot to visualize the kernel density estimate of a numeric column
157 sns.kdeplot(df[’Fare’])
158 plt.show()
159

160 # create a rugplot to visualize the distribution of a numeric column
161 sns.rugplot(df[’Fare’])
162 plt.show()
163

164 # create a jointplot to visualize the relationship between two numeric columns and their
distributions

165 sns.jointplot(x=’Age’, y=’Fare’, data=df)
166 plt.show()

2.2 Data preprocessing

We list some steps for data preprocessing below:

• Handling missing values: This technique is used when there are missing values in the dataset.
There are various ways to handle missing values, such as filling them with the mean, median,
or mode of the column, or dropping rows with missing values. The appropriate method will
depend on the specific dataset and the goal of the analysis.

• Encoding categorical variables: This technique is used when the dataset contains categorical
variables, which are variables that can take on a limited number of categories. One-hot
encoding is a common method for encoding categorical variables, which creates a new binary

13



column for each category. This is useful for inputting categorical variables into machine
learning models, which typically only accept numerical input.

• Standardizing numeric columns: This technique is used to scale the values of a numeric
column so that they have zero mean and unit variance. This is often useful when the nu-
meric columns have different scales and the machine learning model will be sensitive to this
difference in scales.

• Normalizing numeric columns: This technique is used to scale the values of a numeric column
so that they have a minimum value of 0 and a maximum value of 1. This is often useful when
the numeric columns have different scales and the machine learning model will be sensitive
to this difference in scales.

• Binning numeric columns: This technique is used to divide the values of a numeric column
into bins. This is useful for turning a continuous numeric column into a categorical column,
which can be useful for certain types of analysis or machine learning models.

• Applying min-max scaling: This technique is used to scale the values of a numeric column so
that they have a minimum value of 0 and a maximum value of 1. This is often useful when
the numeric columns have different scales and the machine learning model will be sensitive
to this difference in scales.

• Applying robust scaling: This technique is used to scale the values of a numeric column using
the median and interquartile range. This is often useful when the data contains outliers, as
it is less sensitive to the influence of outliers compared to other scaling methods.

• Applying power transformations: Power transformations are a class of functions that can
be used to transform the values of a numeric column in order to stabilize or improve the
assumptions of certain statistical models. Power transformations can be useful for correcting
the skewness of a distribution, as skewed distributions can cause problems when fitting certain
types of models.

• Applying quantile transformations: This technique is used to transform the values of a
numeric column so that they have a uniform or normal distribution. This can be useful for
improving the assumptions of certain machine learning models, which may assume that the
predictor variables are normally distributed.

• Applying box-cox transformations: This technique is used to transform the values of a nu-
meric column so that they are approximately normally distributed. This can be useful for
improving the assumptions of certain machine learning models, which may assume that the
predictor variables are normally distributed.
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1 # create a copy of the original DataFrame
2 df_preprocessed = df.copy()
3

4 # handle missing values in the DataFrame
5 df_preprocessed[’Age’].fillna(df_preprocessed[’Age’].median(), inplace=True)
6 df_preprocessed.dropna(inplace=True)
7

8 # encode categorical variables using one-hot encoding
9 df_preprocessed = pd.get_dummies(df_preprocessed, columns=[’Sex’, ’Pclass’], prefix=[’sex’,

’pclass’])
10

11 # standardize the values of a numeric column
12 from sklearn.preprocessing import StandardScaler
13

14 scaler = StandardScaler()
15 df_preprocessed[’Age_scaled’] = scaler.fit_transform(df_preprocessed[[’Age’]])
16

17 # normalize the values of a numeric column
18 from sklearn.preprocessing import Normalizer
19

20 normalizer = Normalizer()
21 df_preprocessed[’Age_normalized’] = normalizer.fit_transform(df_preprocessed[[’Age’]])
22

23 # bin the values of a numeric column
24 from sklearn.preprocessing import KBinsDiscretizer
25

26 discretizer = KBinsDiscretizer(n_bins=3, encode=’ordinal’)
27 df_preprocessed[’Age_binned’] = discretizer.fit_transform(df_preprocessed[[’Age’]])
28

29 # apply a min-max scaling to a numeric column
30 from sklearn.preprocessing import MinMaxScaler
31

32 scaler = MinMaxScaler()
33 df_preprocessed[’Age_scaled’] = scaler.fit_transform(df_preprocessed[[’Age’]])
34

35 # apply a robust scaling to a numeric column
36 from sklearn.preprocessing import RobustScaler
37

38 scaler = RobustScaler()
39 df_preprocessed[’Age_scaled’] = scaler.fit_transform(df_preprocessed[[’Age’]])
40

41 # apply a power transformation to a numeric column
42 from sklearn.preprocessing import PowerTransformer
43

44 transformer = PowerTransformer(method=’yeo-johnson’)
45 df_preprocessed[’Age_transformed’] = transformer.fit_transform(df_preprocessed[[’Age’]])
46

47 # apply a quantile transformation to a numeric column
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48 from sklearn.preprocessing import QuantileTransformer
49

50 transformer = QuantileTransformer(output_distribution=’normal’)
51 df_preprocessed[’Age_transformed’] = transformer.fit_transform(df_preprocessed[[’Age’]])
52

53 # apply a box-cox transformation to a numeric column
54 from scipy.stats import boxcox
55

56 df_preprocessed[’Age_transformed’], lambda_ = boxcox(df_preprocessed[’Age’])

Section 3

Deep Learning

Deep learning uses artificial neural networks to perform sophisticated computations on large
amounts of data. It is a type of machine learning that works based on the structure and function
of the human brain. By deep, we mean that there are many layers separating the input and output
(hidden layers). Deep learning algorithms train machines by learning from examples. Industries
such as health care, eCommerce, entertainment, and advertising commonly use deep learning. A
neural network is structured like the human brain and consists of artificial neurons, also known
as nodes. These nodes are stacked next to each other in three layers: The input layer, the hidden
layer(s), the output layer. The most basic neural network is the ‘perceptron’ also known as forward
pass or forward propagation. Irrespective of the number of features in the sample (input), the out
of perceptron is a single value (predicted class). The output comes from multiplying the input
vector by the weights (w) and passing the result through the activation function which is a step
function in this case.

Here is the list of top 10 most popular deep learning algorithms:

1. Convolutional Neural Networks (CNNs)

2. Long Short Term Memory Networks (LSTMs)

3. Recurrent Neural Networks (RNNs)

4. Generative Adversarial Networks (GANs)

5. Radial Basis Function Networks (RBFNs)

6. Multilayer Perceptrons (MLPs)

7. Self Organizing Maps (SOMs)

8. Deep Belief Networks (DBNs) based on Restricted Boltzmann Machines( RBMs)

9. Deep Autoencoders based on ‘autoencoders’.
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Long Short Term Memory networks – usually just called ‘LSTMs’ – are a special kind of
RNN, capable of learning long-term dependencies. They were introduced by Hochreiter & Schmid-
huber (1997), and were refined and popularized by many people in following work. They work
tremendously well on a large variety of problems, and are now widely used.

Types of problems: Regression, Classification, Clustering

1. Classification: Logistic regression, k-NN, Support Vector Machine (SVM), Naive Bayes, De-
cision Tree, Random Forest Classifiers

2. Regression: Linear (Linear, Lasso, ..), Polynomial Regression, Support Vector Regression
(SVR), Decision Tree Regression, Random Forest Regression

3. Clustering: These are unsupervised algorithms. k-Means Clustering (KMC), Hierarchical
Clustering (HC)

The two clustering models have their own pros and cons. For example, the pros of k-means is
that it is simple to understand, easily adaptable, works well on small or large datasets, fast, efficient
and performant while the cons is choice of number of cluster is crucial, though can be optimally
selected. The pros of HC is the fact that the optimal number of clusters can be obtained by the model
itself, practical visualisation with the dendrogram. The drawback is that it is not appropriate for
large datasets. These can be done using following commands: import scipy.cluster.hierarchy
as sch, dendrogram = sch.dendrogram(sch.linkage(X, method = ’ward’)). Fitting HC to
the dataset can be achieved by: from sklearn.cluster import AgglomerativeClustering

Unsupervised learning can be divided into three parts: Clustering, Dimensional Reduction
based on Principal Component Analysis (PCA), and Association Problems. Association problems
are based on identifying sequences: such as what clothes do I wear together?

Principal Component Analysis (PCA) can be thought of as fitting a p-dimensional ellipsoid
to the data, where each axis of the ellipsoid represents a principal component. If some axis of the
ellipsoid is small, then the variance along that axis is also small. PCA is defined as an orthogonal
linear transformation that transforms the data to a new coordinate system such that the greatest
variance by some scalar projection of the data comes to lie on the first coordinate (called the first
principal component), the second greatest variance on the second coordinate, and so on. It is
method for feature extraction.

Logistic regression is a classification algorithm traditionally limited to only two-class classifi-
cation problems. If you have more than two classes then LDA (Linear Discriminant Analysis) is
the preferred linear classification technique.

PCA is an unsupervised learning algorithm while LDA is a supervised learning algorithm.
This means that PCA finds directions of maximum variance regardless of class labels while LDA
finds directions of maximum class separability.

LDA makes some assumptions as below:

• The data is Gaussian, that each variable is is shaped like a bell curve when plotted.
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• Each attribute has the same variance, that values of each variable vary around the mean by
the same amount on average.

LDA makes predictions by estimating the probability that a new set of inputs belongs to each
class. The class that gets the highest probability is the output class and a prediction is made. The
model uses Bayes Theorem to estimate the probabilities.

Some extensions of LDA

• Quadratic Discriminant Analysis (QDA): Each class uses its own estimate of variance (or
covariance when there are multiple input variables).

• Flexible Discriminant Analysis (FDA): Where non-linear combinations of inputs is used such
as splines.

• Regularized Discriminant Analysis (RDA): Introduces regularization into the estimate of the
variance (actually covariance), moderating the influence of different variables on LDA.

Closely related idea if that of KPCA (kernel principal component analysis) which is nonlinear
dimension reduction method. This transforms the data that is not linearly separable onto a new,
lower-dimensional subspace that is suitable for linear classifiers. In Scikit-learn, it can be called
as: from sklearn. decomposition import KernelPCA

1 from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
2 sklearn_lda = LDA(n_components=2)
3 X_lda_sklearn = sklearn_lda.fit_transform(X, y)

1 import numpy as np
2 from sklearn.decomposition import PCA
3 X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
4 pca = PCA(n_components=2)
5 pca.fit(X)
6 PCA(n_components=2)
7 print(pca.explained_variance_ratio_)
8 print(pca.singular_values_)

Between supervised and unsupervised learning, we have something which is - reinforcement
learning (RL). It is the case where we have no data at all, like city for a self-driven car. In this
sense, the entire knowledge about roads and traffic rules won’t teach the car how to drive itself.
The goal is to minimize errors and not to predict the moves! Survival of the fittest or rather the
algorithm is the sole motive of RL.

Q-learning is a commonly used model-free approach which can be used for building a self-
playing PacMan agent. It revolves around the notion of updating Q values which denotes value
of performing action a in state s. The following value update rule is the core of the Q-learning
algorithm.
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3.1 Data cleaning

It is part of Data wrangling which includes importing, cleaning, structuring, handling missing
values, text mining.

It is important aspect of data science and can be summarised below in some steps:

• Missing Values: Identify missing values in the dataset. Decide on an appropriate method to
handle missing values, such as imputation or deletion. Impute missing values with appro-
priate values based on the method selected, such as mean, median, or mode. In Pandas we
can use: df.isna() and df.isna().sum() to check which enteries are not available.

Alternatively, for mean imputation we can use: in Pandas– df.fillna(df.mean())

1 def show_missing(df):
2 """Return a Pandas dataframe describing the contents of a source dataframe

including missing values."""
3

4 variables = []
5 dtypes = []
6 count = []
7 unique = []
8 missing = []
9 pc_missing = []

10

11 for item in df.columns:
12 variables.append(item)
13 dtypes.append(df[item].dtype)
14 count.append(len(df[item]))
15 unique.append(len(df[item].unique()))
16 missing.append(df[item].isna().sum())
17 pc_missing.append(round((df[item].isna().sum() / len(df[item])) * 100, 2))
18

19 output = pd.DataFrame({
20 ’variable’: variables,
21 ’dtype’: dtypes,
22 ’count’: count,
23 ’unique’: unique,
24 ’missing’: missing,
25 ’pc_missing’: pc_missing
26 })
27

28 return output

• Duplicates: Identify and remove duplicate records in the dataset. Verify that all duplicates
have been removed
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Figure 2. Diagrammatic representation of bias and variance and how we can over/under fit the model.
Definition: Variance indicates how much the estimate of the target function will alter if different training
data were used. In other words, variance describes how much a random variable differs from its expected
value. Variance is based on a single training set. Variance measures the inconsistency of different predictions
using different training sets - it’s not a measure of overall accuracy. Bias is the amount that a model’s
prediction differs from the target value, compared to the training data. Bias error results from simplifying
the assumptions used in a model so the target functions are easier to approximate.

• Outliers: Identify and handle outliers or extreme values in the data Decide on an appropriate
method to handle outliers, such as deletion, transformation, or imputation. Impute or delete
outliers based on the method selected such as RANSAC

• Data Format: Verify that all data is in the correct format. Convert data into the appropriate
format, such as converting dates into a common format. Handle inconsistent data formats

• Data Validity: Verify all data is valid and consistent. Check for errors (incorrect values or
typos) and correct them

• Data Standardization and Normalization: Data is generally processed in one of two ways:
data standardization or data normalization, sometimes referred to as min-max scaling. The
two most popular techniques for scaling numerical data prior to modeling are normalization
and standardization. Normalization scales each input variable separately to the range 0-1,
which is the range for floating-point values where we have the most precision. Standardization
scales each input variable separately by subtracting the mean (called centering) and dividing
by the standard deviation to shift the distribution to have a mean of zero and a standard
deviation of one. This can be achieved in Pandas as

Section 4

Definitions:
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In k-fold cross-validation, we divide the dataset into k equal parts. After this, we loop over the
entire dataset k times. In each iteration of the loop, one of the k parts is used for testing, and the
other k−1 parts are used for training. Using k-fold cross-validation, each one of the k parts of the
dataset ends up being used for training and testing purposes. An improvement of this is stratified
k-fold cross-validation.

A special case of k-fold cross-validation is LOOCV (leave-one-out cross-validation) where we
do not leave one training set for test but rather choose k = n so that only one training example is
used for testing during each iteration.

4.1 Confusion matrix

A matrix that lays out the performance of a learning algorithm. It has four elements, TP (true
positive), TN (true negative), FP (false positive) and FN (false negative).

ERR = FP + FN

FP + FN + TP + TN
(4.1)

whereas the prediction accuracy is 1-ERR. We also have FPR, TPR.

FPR = FP

FP + TN
= 1−TNR (4.2)

TPR = TP

FN + TP
(4.3)

A
REC (recall) is equal to TPR while PRE (precision) is defined as:

PRE = TP

FP + TP
(4.4)

All same meaning: [Sensitivity, Recall, Hit rate, or True positive rate] and [Specificity, Selec-
tivity or True negative rate (TNR)]

F1 score is the harmonic mean of PRE and REC, and it is calculated using the following
formula:

F1 = 2 ·PRE ·REC
PRE + REC

The F1 score is used when the recall and the precision are equally important.

4.2 Gradient Descent (SGD)

In most of the problems in machine learning, we have to optimize the loss function. The optimizer
is an algorithm that adjusts the weights to minimize the loss. Nearly all of the optimization
algorithms used in deep learning belong to a family called stochastic gradient descent. They are
iterative algorithms that train a network in steps. One step of training goes is as follows:
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• Sample some training data and run it through the network to make predictions.

• Measure the loss between the predictions and the true values.

• Adjust the weights in a direction that makes the loss smaller.

SGD is little different and has advantages of finding global minimum over GD methods. Why
is it called SGD? – It is called so because, the gradient is a vector that specifies in what direction
the weights need to move. More precisely, it tells us how to change the weights to make the loss
change fastest. We call our process gradient descent because it uses the gradient to descend the
loss curve towards a minimum. Stochastic means ‘randomness’ or with a noise. Each step of SGD
is taken in a direction which is not necessarily steepest downhill direction due to added noise.

The mechanism for introducing this randomness is simple. At each step, the algorithm chooses
a random subset (called ‘batch’) of training data and computes gradient from this examples alone.
Update rule is:

ϕt+1 ← ϕt − α
∑
i∈Bt

∂li[ϕt]
∂ϕ

(4.5)

where Bt is a set containing rhe indices of the input/output pairs in current batch and li is the
loss due to the ith pair. α is known as the learning rate (aka step size).

Steepest descent is a special case of gradient descent where the step size is chosen to minimize
the objective function value. Gradient descent refers to any of a class of algorithms that calculate
the gradient of the objective function, then move ‘downhill’ in the indicated direction; the step
length can be fixed, estimated (e.g., via line search).

Stochastic gradient descent (SGD) runs a training epoch for each example within the dataset
and it updates each training example’s parameters one at a time. Since you only need to hold
one training example, they are easier to store in memory. While these frequent updates can offer
more detail and speed, it can result in losses in computational efficiency when compared to batch
gradient descent. Its frequent updates can result in noisy gradients, but this can also be helpful in
escaping the local minimum and finding the global one.

• Overfitting: The model captures the training data well but fails to generalize to unseen data.
High variance, Low bias.

• Underfitting: The model does not capture the training data well. High variance, high bias.

We define variance as measure of how much deviation occurs for particular case if we retrain
the model multiple times using different subsets of training data.

How to reduce overfitting
We can either do regularization or dimensional reduction via feature selection.
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4.3 Activation function

An activation function is a function used in artificial neural networks which outputs a small value
for small inputs, and a larger value if the inputs exceed a threshold. If the inputs are large enough,
the activation function "fires", otherwise it does nothing. In other words, an activation function is
like a gate that checks that an incoming value is greater than a critical number.

Activation functions are useful because they add non-linearities into neural networks, allowing
the neural networks to learn powerful operations. If the activation functions were to be removed
from a feedforward neural network, the entire network could be re-factored to a simple linear
operation or matrix transformation on its input, and it would no longer be capable of perform-
ing complex tasks such as image recognition. A neural network with no activation functions is
equivalent to a linear regression model, and can perform no operation more complex than linear
modeling.

Well-known activation functions used in data science include the rectified linear unit (ReLU)
function, and the family of sigmoid functions such as the logistic sigmoid function, the hyperbolic
tangent, and the arctangent function. Two commonly used activation functions: the rectified linear
unit (ReLU) and the logistic sigmoid function. The ReLU has a hard cutoff at 0 where its behavior
changes, while the sigmoid exhibits a gradual change. Both tend to 0 for small x, and the sigmoid
tends to 1 for large x.

4.3.1 ReLU derivative

f(x) =

0 if x ≤ 0
1 if x > 0

(4.6)

The reason for the derivative being undefined at x = 0 is that its left- and right derivative are
not equal. This sometimes creates problem with ‘backpropagation’ since when training a neural
network, a neuron can become ‘trapped’ in the zero region and backpropagation will never change
its weights. Because of the zero gradient problem faced by the ReLU, it is sometimes common to
use an adjusted ReLU function called the parametric rectified linear unit, or PReLU:

f(α, x) =

x if x ≥ 0
αx if x < 0

(4.7)

This has the advantage that the gradient is nonzero at all points (except 0 where it is undefined).

f(x) = exp(x)
1 + exp(x) = 1

1 + exp(−x) (4.8)

Softmax’s ith component is defined as: exp(xi)∑
j

exp(xj) The function Softmax S is also a non-linear
function but it is special in that it usually is the last operation done in a network. It takes in a
vector of real numbers and returns a probability distribution with components summing to 1.

The backpropagation computes L(θ) using Chain rule and then weights are updated as:
θ(t+1) = θ(t) − η∇θL(θ). η is also referred to as learning rate. Just replacing standard SGD
with an optimizer like Adam or RMSProp will boost performance a lot.
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4.4 Fun with matrices

Non-negative matrix factorization (Lee, 2000).

1 import numpy as np
2 X = np.array([[1, 2], [2, 2], [3, 1.2], [4, 1], [5, 0.8], [6, 1]])
3 from sklearn.decomposition import NMF
4 model = NMF(n_components=2, init=’random’, random_state=0)
5 W = model.fit_transform(X)
6 H = model.components_

4.5 Back propagation

Backpropagation can be thought of as a computationally efficient approach to compute the partial
derivatives of a complex cost function in multilayer NNs. The challenge in the parameterization
of NN is that we are typically dealing with a very large number of weight coefficients in a high-
dimensional feature space. In contrast to cost functions of single-layer NNs such as Adaline (single
layer), which we have seen in previous chapters, the error surface of an NN cost function is not
convex or smooth with respect to the parameters. There are many bumps in this high-dimensional
cost surface (local minima) that we have to overcome in order to find the global minimum of the
cost function.

Automatic differentiation comes with two modes, the forward and reverse modes. Backpropa-
gation is simply a special case of reverse-mode automatic differentiation. The trick of reverse mode
is that we start from right to left: we multiply a matrix by a vector, which yields another vector
that is multiplied by the next matrix and so on. Matrix-vector multiplication is computationally
much cheaper than matrix-matrix multiplication, which is why backpropagation is one of the most
popular algorithms used in NN training.

We start by computing:

• textbfδout = aout − y

where y is the vector of true class labels. Now, we compute error in the hidden layer as:

textbfδ(h) = textbfδout
(
Wout

)T
⊗ ∂ϕ(z(h))

∂z(h) (4.9)

where derivative is taken of the activation function (sigmoid etc.)
Remember: SGD algorithm requires gradients to be calculated for each variable in the model.

Back-propagation is an automatic differentiation algorithm that can be used to calculate the gra-
dients for the parameters in neural networks. Together, the back-propagation algorithm and SGD
algorithm can be used to train a neural network. Something like ‘Stochastic Gradient Descent with
Back-propagation’. The term back-propagation is often misunderstood as meaning the whole learn-
ing algorithm for multi-layer neural networks. Actually, back-propagation refers only to the method
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for computing the gradient, while another algorithm, such as stochastic gradient descent, is used
to perform learning using this gradient.

Fill in .....

Section 5

API

An application programming interface (API) is a computing interface which defines interactions
between multiple software intermediaries. It defines the kinds of calls or requests that can be
made, how to make them, the data formats that should be used, the conventions to follow, etc.
The way I like to understand an API is that it’s an “online function,” a function that I can call
online. For example: one can have a movie API, which returns names of drama movies when we
pass the ‘animation’ genre as input. The advantage of using such a sort of mechanism is that
the API user doesn’t get access to the whole dataset or source code and yet they can get all the
information they need.

Consider http://www.omdbapi.com/?i=tt3896198&apikey=9ea43e94
Endpoint: In the above API call, the endpoint is : http://www.omdbapi.com/. Simply this

is the location of where the function code is running. API Access Key: Most of the public APIs
will have some access key, which you can request. For OMDB API, I had to register and get the
API key which is 9ea43e94.

?Operator: This operator is used to specify the parameters we want to send to the API or our
“online function.” Here we give two params to our API i.e., IMDB movie ID and API Access Key
using the ? operator. Since there are multiple inputs, we use & operator also.

One of the most common use cases for Data Science is how to create an API for getting a
model’s prediction? Let us assume that we have a Titanic Survival model in place that predicts
if a person will survive or not. And, it needs a person’s age and sex as input params to predict.
We will create this API using FastAPI in two ways: GET and PUT. Don’t worry; I will explain
each as we go. What is GET? — In a GET request, we usually try to retrieve data using query
parameters that are embedded in the query string itself. For example, in the OMDB API, we
use the GET request to specify the movie id and access key as part of the query itself. What is
PUT? — An alternative to the GET request is the PUT request, where we send parameters using
a payload, as we will see in the second method. The payload is not part of the query string, and
thus PUT is more secure. It will become more clear when you see the second part. But before we
go any further, we need to install FastAPI and uvicorn ASGI server with:

pip install fastapi
pip install uvicorn

Section 6

Quantum meets Machine Learning = QML
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The idea of QML was first introduced in [1]. We would not talk about unsupervised QML or
quantum reinforcement learning and will only make note of supervised QML.

Check out - QISKIT ML
TensorFlow Quantum [2]
And of course, we have Penny Lane developed at Xanadu by Schuld et al.

6.1 Acronyms used in QML

• QNNA: Quantum nearest-neighbor algorithm

• QDTC: Quantum decision tree classifiers

• QKM: Quantum kernel methods

• QSVM: Quantum support vector machines

• QNNC: Quantum neural network classifiers

In QML, we have two data encoding methods. Amplitude encoding (AE) and block encoding
(BE).

• AE: The data vector is encoded in the amplitude of the quantum state and then passed to
quantum neural network. A 2n-dimensional vector can be encoded in n qubits as is well-
known. AE based QNNs are regarded as ‘kernel methods’ 3. Encoding is a very important
step! It is often a bottleneck for the runtime.

• BE: This is more practical on NISQ devices. The initial quantum state is fixed and the
input data is required to be encoded into the QNN circuit classically in a way similar to the
encoding of the variational parameters. There is no need for QRAM (quantum RAM).

For QML, we need to remember that there are some conditions on the preprocessing i.e.,
unit length of input vector which is because of the normalized state. The result of QML is a
measurement made by the observer.

By 2023!
Tensor networks for QML
One of the interesting things is whether we can use the idea of tensor networks to understand

QML better. Much work has been done and a good reference page is this. I suspect that there
should already be work on encoding using these structures.

3Kernel methods owe their name to the use of kernel functions (positive-definite kernel or kernel function is a
generalization of a positive-definite function or a positive-definite matrix.), which enable them to operate in a high-
dimensional, implicit feature space without ever computing the coordinates of the data in that space, but rather by
simply computing the inner products between the images of all pairs of data in the feature space.
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Section A

Some probability recap

Question 1: What is the probability to get two heads consecutively when a coin is tossed 5 times.
What about general n?

Question 2: Suppose P (A) is the probability that A passes an exam, P (B) is the probabil-
ity that B passes an exam, P (A ∩ B) is that both passes, P (A ∪ B) is at least one passes. We
have:

P (A ∪B) = P (A) + P (B)− P (A ∩B)

Question 3:
P (TrmandE) = P (E)P (T |E)

. Where T is tsunami with probability 10−4 and E is earthquake with probability 10−4. Both are
independent so P (T |E) = P (T ).

Section B

Some statistics recap

• Central limit theorem: According to CLT, we can treat sampling distribution of any pop-
ulation as normal irrespective of the distribution function of the population. This theorem
needs the sample size to be large enough.

• R-squared (R2) is a statistical measure that represents the proportion of the variance for a
dependent variable that’s explained by an independent variable or variables in a regression
model. R2 = 1 means that all variation in dependent can be explained. R-Squared only
works as intended in a simple linear regression model with one explanatory variable. With
a multiple regression made up of several independent variables, the R-Squared must be
adjusted. The adjusted R-squared compares the descriptive power of regression models that
include diverse numbers of predictors. Every predictor added to a model increases R-squared
and never decreases it. Thus, a model with more terms may seem to have a better fit just for
the fact that it has more terms, while the adjusted R-squared compensates for the addition
of variables and only increases if the new term enhances the model above what would be
obtained by probability and decreases when a predictor enhances the model less than what
is predicted by chance. In an overfitting situation, an incorrectly high value of R-squared is
obtained, even when the model actually has a decreased ability to predict. This is not the
case with the adjusted R-squared.

• p-value: The p-value is a probability that the observed spatial pattern was created by some
random process. When the p-value is very small i.e., p < 0.05, it means it is very unlikely
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that the observed spatial pattern is the result of random processes, so you can reject the
null hypothesis. In other words, a p-value is a number describing how likely it is that your
data would have occurred under the null hypothesis of your statistical test. The p value can
only tell you whether or not the null hypothesis is supported. It cannot tell you whether
your alternative hypothesis is true, or why. The threshold value for determining statistical
significance is also known as the α-value. All statistical tests have a null hypothesis. For most
tests, the null hypothesis is that there is no relationship between your variables of interest
or that there is no difference among groups. For example, in a t test, the null hypothesis is
that the difference between two groups is zero. Recall that a t-test is a statistical test that
is used to compare the means of any two groups.

• z-score: z-scores are standard deviations. For example a z = 2 means that the result is
2 standard deviations from the mean. Both z-scores and p-values are associated with the
standard normal distribution. Very high or very low (negative) z-scores, associated with
very small p-values, are found in the tails of the normal distribution. The higher or lower the
z-score, the more unlikely the result is to happen by chance and the more likely the result is
meaningful.

Section C

Recommender Systems

A recommender system (RS), or a recommendation system, is a subclass of information filtering
system that seeks to predict the “rating” or “preference” a user would give to an item. Recom-
mender systems are utilized in a variety of areas, with commonly recognized examples taking the
form of playlist generators for video and music services, product recommenders for online stores,
etc. These systems can operate using a single input, like music, or multiple inputs within and
across platforms like news, books, and search queries. Recommender systems are utilized in order
to make better product suggestions to customers, or personalized recommendations to friends.

RSs leverage machine learning algorithms in order to make better predictions about a user’s
preferences. There are a number of different machine learning algorithms that can be used in a
recommender system. Each algorithm has its own strengths and weaknesses, and the best algorithm
for a particular application will depend on the nature of the data. The most common is the linear
regression algorithm. The linear regression algorithm is used to find the best linear approximation
to a data set. In a recommender system, this algorithm is used to predict how a user will rate
an item based on their past ratings. Other machine learning algorithms that can be used in RS,
include some of the following:

• Neural Networks: A neural network is a type of machine learning algorithm that is similar
to the brain. It is composed of interconnected neurons that can learn to recognize patterns.
Neural networks are often used for prediction tasks, like recommender systems.
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• K-NearestNeighbor (K-NN): The K-NN algorithm is often used for recommender systems
because it is able to handle large amounts of data and can produce good predictions. The
K-NN algorithm works by finding the k nearest neighbours of a given item. The neighbours
are then used to vote on the rating of the item. The algorithm then uses the average of the
votes to predict the rating of the item. The K-NN algorithm is often used for Recommender
Systems because it is able to handle large amounts of data and can produce good predictions.

• Bayesian inference: Bayesian inference is a type of machine learning algorithm that is used
to make better predictions. It is often used in recommender systems because it can handle
large amounts of data. The Bayesian inference algorithm works by using a probability model
to predict the rating of an item. The algorithm uses the past ratings of a user to build
the probability model. This allows the algorithm to make better predictions about a user’s
preferences.

• Dimensionality reduction: Dimensionality reduction is a type of machine learning algorithm
that is used to reduce the number of dimensions in a data set. It is often used in Recommender
Systems because it can help to reduce the amount of data that needs to be processed. The
dimensionality reduction algorithm works by finding a lower dimensional representation of the
data. This can be done by using techniques like Principal Component Analysis (PCA).These
are just some of the machine learning algorithms that can be used in Recommender Systems.
Each algorithm has its own strengths and weaknesses, and the best algorithm for a particular
application will depend on the nature of the data.

The following is a list of benefits / value of building recommender system and why businesses
must consider:

• Recommender systems help businesses make money by increasing sales and predicting what
customers want.

• Recommender systems can improve customer satisfaction by providing relevant recommen-
dations. They can improve customer loyalty by suggesting new items that the customer may
like.

• Recommender systems can reduce the amount of time it takes to find the right item for a
customer.

• Recommender systems can help businesses learn more about their customers’ preferences.

There are different types of RS. Some of them are listed below:

• Content-based recommendation: The most common type of recommender system is the
content-based recommender system. A content-based recommender system is a type of rec-
ommender system that relies on the similarity between items to make recommendations. For
example, if you’re looking for a new movie to watch, a content-based recommender system
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might recommend movies that are similar to ones you’ve watched in the past. Content-based
recommender systems are commonly used in music, books, and movies. They can be used to
recommend products, services, or even websites. Content-based recommender systems are
based on the idea that if you like one item, you’re likely to like other items that are similar
to it. To build a content-based recommender system, you need to first define what similarity
means. This is where machine learning comes in. A content-based recommender system can
use machine learning to learn the similarity between items. Once it has learned the similarity
between items, it can make recommendations accordingly.

• Collaborative filtering based recommendation: Another type of recommender system is the
collaborative filtering recommender system. A collaborative filtering recommender system is
a type of machine learning algorithm that makes predictions about what a user might want
to buy or watch based on the past behavior of other users. The algorithm looks at the items
that other users with similar taste have purchased or rated highly, and recommends those
items to the new user. The main advantage of collaborative filtering is that it doesn’t require
any information about the users or items; all it needs is a dataset of past user behavior. Col-
laborative filtering is one of the most popular techniques for building recommender systems,
and is used by major companies such as Amazon, Netflix, and Spotify.

• Hybrid recommender system: A third type of recommender system is the hybrid recom-
mender system. The hybrid approach has become increasingly popular in recent years as it
offers the potential to overcome some of the limitations of each individual approach.

Content-based recommender systems focus on the attributes of items in order to make recom-
mendations. This can often lead to issues with scalability, as the system needs to be constantly
updated with new content in order to make accurate recommendations. Collaborative filtering
systems, on the other hand, focus on the relationships between users and items. This can often
result in problems with sparsity, as it can be difficult to find enough users who have rated a given
item. The hybrid approach seeks to overcome these limitations by combining the two approaches.

A hybrid recommender system is a type of recommender system that combines both content-
based and collaborative filtering approaches. The hybrid approach takes advantage of both content-
based and collaborative filtering by using them to supplement each other. For example, a hybrid
recommender system might first identify a set of items that are similar to the item the user is
interested in, and then use collaborative filtering to identify which of those items the user is most
likely to enjoy. This approach can provide more accurate recommendations than either method
used alone. The hybrid approach has been shown to be more effective than either method used
alone, as it is able to leverage the strengths of both approaches. Hybrid recommender systems are
often more scalable and efficient than pure content-based or collaborative filtering systems.

Examples of Recommender Systems Some of the most popular examples of recommender
systems include the ones used by Amazon, Netflix, and Spotify.

Amazon’s recommender system is based on a combination of collaborative filtering and content-
based algorithms. It uses past customer behavior to make recommendations for new products.
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Amazon’s recommender system is one of the most complex and sophisticated in the world. Netflix’s
recommender system is also based on a combination of collaborative filtering and content-based
algorithms. However, Netflix takes things a step further by also incorporating machine learning
into its algorithm. This allows Netflix to make predictions about what a user might want to watch
based on the behavior of other users. Spotify’s recommender system is based on collaborative
filtering. It uses past user behavior to make recommendations for new songs to listen to.

In short, recommender systems are a type of machine learning based systems that are used
to predict the ratings or preferences of items for a given user. There are three main types of
Recommender Systems: collaborative filtering, content-based, and hybrid. Some of the most
popular examples of Recommender Systems include the ones used by Amazon, Netflix, and Spotify.
Collaborative filtering systems use past user behavior to make recommendations for new products.
Content-based systems focus on the attributes of items in order to make recommendations. The
hybrid approach is a combination of both content-based and collaborative filtering approaches.
Hybrid recommender systems are often more scalable and efficient than pure content-based or
collaborative filtering systems.

In the most basic setup, the RS is made up of five core components: as shown in Fig. below.

1. Data Collection and Processing

2. Recommender Model

3. Recommendation post-processing

4. Online modules (tells us what needs to be stored in logs in order to both report how your
system is performing and perhaps to also learn from the usage and interactions)

5. User interface (For example, it’s good practice to explain to users why they are being rec-
ommended an item (e.g. ‘You may like watching this movie because you liked movies X and
Y ), as this makes the recommender’s decisions more transparent.)

C.1 Matrix Factorization

In collaborative filtering, matrix factorization is the state-of-the-art solution for sparse data prob-
lem, it is also known as ‘Netflix Prize Challenge’.

C.1.1 Dithering

There is a relatively low cost but high value technique for improving the quality of our recommen-
dations known as ‘dithering’. It’s a technique that re-orders a list of recommendations by slightly
shuffling them around based on some noise. It is typically implemented in the recommendation
post-processing component.
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Section D

Natural Language Processing (NLP), ChatGPT and all that..

NLP is a powerful machine learning technique that can help you create chatbots, analyze sentiment,
summarize text, classify data, and recognize speech.

Unless you have been living in the mountains with no internet, you must have read or exper-
imented with ChatGPT. In this post, and probably subsequent ones, we will try to explain what
makes it tick and the foundations behind this progress. First some acronyms used:

• ML: Machine learning

• LLM: Large Language Model

• GPT: Generative Pre-training Transformer

• LSTM: Long-Short-Term-Memory

and Tranformer models
ChatGPT is an extrapolation of a class of ML models known as LLM. LLMs takes in huge

quantities of text data and infer relationships between words in that text. The capability of LLMs
increase with increase in size of their input datasets and parameter space.

In NLP, one is interested in making inferences from large data of text. The most basic and
traditional method was S-to-S (sequence to sequence) models. However, when we have large
amount of text this was not optimal since the model forgets the learning from the earlier parts
as it moves along a sequence. This means that there is loss of information/learning. LSTM and
GRU’s did try to salvage this situation by discarding information that was not useful along the
way to remember important information. Though, it still wasn’t enough. Then in 2014, a paper
introduced ‘attention mechanisms’. The authors suggested assigning relative importance to each
word in a sentence such that the model focuses on important words and ignores the rest (much
like importance sampling in Monte Carlo methods). It emerged to be a massive improvement over
encoder-decoder models.

The most basic training of language models involves predicting a word in a sequence of words.
This is observed as either next-token-prediction (you must have noticed this in Gmail when com-
posing an email when it suggest auto completion) and masked-language-modeling (where a sentence
like ‘Bill ??? running’, is suggested completion through words as ‘likes’, ‘hates’ etc. ??? denotes
the mask!). These basic-sequencing techniques are often implemented through LSTM. However, it
has some drawbacks!

While running might be associated to ‘hate’, it might be that Bill is a marathon runner and
actually loves it. There might be other sentences in the text which affirms this like ‘Bill runs thrice
a day’. However, if it is masked, LSTM might actually assign ‘hate’ to complete the sentence
as: ‘Bill hates running’. This means that the model is unable to give more importance to some
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surrounding words than others. The other issue is that the input data is processed individually
and sequentially rather than as a whole big chunk. This means that when an LSTM is trained,
the window of context is fixed. This limits the complexity of the relationships between words and
the meanings that can be derived. So, suppose we have two sentences – ‘Stochastic gradient is a
very powerful tool in machine learning’ , and ‘Stochastic gradient which is related to conjugate
gradient is a method frequently used in inverting fermionic operators in lattice field theory’. Now,
if we train the model, and ask ‘What is stochastic gradient?’. It will not say anything about lattice
field theory since it doesn’t see the whole corpus of data.

Because of these limitations, in 2017, a paper titled ‘Attention is all you need’ was posted which
introduced the idea of ‘transformers’. The title is named because the central idea of this architecture
is to rely on attention (or, self-attention) instead of the feedback loop found in RNNs. Remember
that LSTM networks are a type of RNN that uses special units in addition to standard units.
Unlike LSTMs, transformers can process all input data at once! Using self-attention mechanism,
the model can give different weights to different parts of the input data in relation to any position of
the language sequence. This feature enabled massive improvements in putting meaning into LLMs
and enables processing of significantly larger datasets and tackle dependencies between them.

All GPT models make use of the transformer architecture, which means they have an encoder
to process the input sequence and a decoder to generate the output sequence. Both the encoder and
decoder have a multi-head (The ‘multi-head’ attention is an evolution of self-attention) attention
mechanism that allows the model to differentially weight parts of the sequence to infer mean-
ing and context. In addition, the encoder leverages masked-language-modeling to understand the
relationship between words and produce more comprehensible responses. The self-attention mech-
anism that drives GPT works by converting tokens (pieces of text, which can be a word, sentence,
or other grouping of text) into vectors that represent the importance of the token in the input
sequence.
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The text below was generated by Chat GPT-3 with the prompts: Write notes about Large lan-
guage models (LLM) in LATEX, Explain Transformer LLM, What is the Maths behind Transformer
LLM and so on. It even made a schematic diagram (in TikZ) for me on instruction which was
not very ordered and black and white. It would be interesting to try this with GPT-4.

Large Language Models (LLMs)

Large Language Models (LLMs) are machine learning models that use deep neural networks to
learn the statistical patterns and structure of natural language data. LLMs are designed to generate
text that is similar in style, tone, and content to human language, and can be used for a wide
range of natural language processing tasks.

Architecture

LLMs are typically based on a type of neural network known as a transformer, which is designed
to process sequential data such as text. The transformer network is composed of multiple layers of
self-attention mechanisms, which allow the model to attend to different parts of the input sequence
and learn the relationships between them.

Training Data

LLMs are trained on large amounts of natural language data, typically in the form of text corpora
such as books, articles, and web pages. The training data is preprocessed to remove noise, and
then fed into the model in batches. The model is trained to predict the next word in a sequence
of words, given the previous words as context.

Applications

LLMs have a wide range of applications in natural language processing, including but not limited
to:

• Text generation and summarization

• Language translation

• Question-answering systems

• Sentiment analysis

• Named entity recognition

• Text classification

• LLMs are particularly useful in tasks where the input data is unstructured and the output
is expected to be in natural language form.
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Challenges

LLMs also present several challenges, including:

• Computational complexity: LLMs require large amounts of computational power to train
and run, making them expensive to use.

• Bias: LLMs can reflect the biases and prejudices present in the training data, leading to
unfair or inaccurate results.

• Privacy: LLMs can be used to generate text that appears to be written by a specific person,
leading to potential privacy concerns.

Future Directions

LLMs are an active area of research, with ongoing efforts to improve their accuracy, efficiency,
and fairness. Researchers are also exploring new applications of LLMs, such as generating creative
writing, generating code, and creating interactive conversational agents.

Fine-tuning

LLMs can be fine-tuned on specific tasks by further training the model on a smaller dataset that
is specific to that task. This allows the model to adapt to the specific language and patterns of
the task, leading to improved performance.

Pretrained Models

Pretrained LLMs, such as OpenAI’s GPT series and Google’s BERT, are available for general use
and can be fine-tuned for specific tasks. These models have been trained on massive amounts of
data, making them capable of generating high-quality text in a wide range of contexts.

Ethical Considerations

LLMs raise important ethical considerations, particularly with regard to bias and privacy. Because
LLMs learn from large datasets that may contain biases and prejudices, the output of the model
may reflect these biases, leading to unfair or discriminatory results. Additionally, LLMs can be
used to generate text that appears to be written by a specific person, leading to potential privacy
concerns.

Interpretability

LLMs can be difficult to interpret, as the internal workings of the model are complex and opaque.
Researchers are exploring ways to make LLMs more transparent and interpretable, such as through
attention visualization and feature attribution techniques.

Open Research

LLMs are the subject of active research, with ongoing efforts to improve their accuracy, efficiency,
and fairness. Many LLMs are open-source, allowing researchers and developers to build upon
existing models and advance the field.
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Multilingual LLMs

Multilingual LLMs are models that have been trained on multiple languages, allowing them to
generate text in different languages and perform cross-lingual tasks. Multilingual LLMs can be
useful in multilingual societies and in tasks that involve multiple languages.

Domain-Specific LLMs

Domain-specific LLMs are models that have been trained on text data from a specific domain,
such as legal documents or scientific papers. These models are designed to generate text that is
specific to the domain and can be useful in tasks that require specialized knowledge.

Combining LLMs with other NLP Techniques

LLMs can be combined with other natural language processing (NLP) techniques, such as senti-
ment analysis and named entity recognition, to create more complex and powerful NLP models.
This approach is known as neural architecture search and can lead to significant improvements in
performance.

Limitations

LLMs have limitations, particularly in tasks that require more than just statistical patterns in
language. LLMs struggle with tasks that require common sense reasoning or knowledge that is not
explicitly present in the training data. Additionally, LLMs can produce text that is fluent but not
necessarily coherent, leading to potential issues in certain applications.

Impact on Society

LLMs have the potential to transform many aspects of society, including education, journalism, and
entertainment. However, the widespread use of LLMs also raises important ethical considerations,
such as the potential for misuse and the impact on employment. It is important for researchers
and developers to consider the social and ethical implications of LLMs in their work.

Section E

Details about Transformer LLM

Transformer LLM refers to a type of Large Language Model that is based on the Transformer
architecture. The Transformer is a neural network architecture that was introduced by Vaswani et
al. in 2017 and has been used extensively in natural language processing (NLP) tasks, including
machine translation and language modeling. Transformer LLMs use a self-attention mechanism
to process input sequences of variable length and produce output sequences of variable length.
The self-attention mechanism allows the model to attend to different parts of the input sequence
at each step of the computation, allowing it to capture long-range dependencies and improve
performance on NLP tasks. One example of a Transformer LLM is the GPT (Generative Pretrained
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Transformer) series developed by OpenAI. GPT models have been pre-trained on large amounts
of text data and can be fine-tuned for a variety of downstream NLP tasks, such as language
generation, summarization, and question answering. Transformer LLMs have shown significant
improvements in NLP tasks and have been used in a variety of applications, including chatbots,
language translation, and sentiment analysis.

Encoder
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Feedforward
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+

Normalization
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y

Training

Training a Transformer LLM involves pre-training the model on a large corpus of text data using
an unsupervised learning approach, such as the masked language modeling task. During pre-
training, the model learns to predict missing words in a sentence, which helps it to develop a
general understanding of language. After pre-training, the Transformer LLM can be fine-tuned
on specific downstream NLP tasks, using supervised learning techniques. Fine-tuning involves
training the model on a smaller dataset that is specific to the task, which allows the model to
adapt to the language and patterns of the task.

Architecture

The Transformer LLM architecture consists of an encoder and a decoder, each composed of multiple
layers of self-attention and feedforward neural networks. The encoder processes the input sequence
and produces a sequence of hidden states, while the decoder generates the output sequence based
on the encoder’s hidden states. The self-attention mechanism allows the model to learn which
parts of the input sequence to attend to at each step of the computation. The feedforward neural
networks apply a non-linear transformation to the hidden states, allowing the model to capture
complex patterns in the input sequence.

Advantages

Transformer LLMs have several advantages over traditional recurrent neural network (RNN) based
language models. They can process input sequences in parallel, making them faster and more
efficient. They can also capture long-range dependencies in the input sequence, which is particularly
useful for NLP tasks that require understanding of context. Additionally, Transformer LLMs can be
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fine-tuned on specific tasks with relatively small amounts of data, making them useful in practical
applications.

Limitations

Transformer LLMs are not without limitations. They can be computationally expensive to train
and require large amounts of data to achieve state-of-the-art performance. Additionally, they may
struggle with tasks that require common sense reasoning or knowledge that is not explicitly present
in the training data.

Future Directions

Research on Transformer LLMs is ongoing, with ongoing efforts to improve their performance, effi-
ciency, and interpretability. Researchers are also exploring ways to incorporate external knowledge
into LLMs, such as through external memory or attention mechanisms, in order to improve their
ability to reason and understand context. The Transformer LLM is based on the Transformer
architecture, which is a type of neural network that uses self-attention to process input sequences.
Here’s a brief overview of the mathematics involved in the Transformer LLM:

Self-Attention

At the heart of the Transformer LLM is the self-attention mechanism, which allows the model to
attend to different parts of the input sequence at each step of the computation. Self-attention can
be represented mathematically as follows:

Given an input sequence of length n, we first transform each input element into a vector
of dimension d. These vectors are arranged into a matrix X ∈ Rn×d. We then compute three
matrices: Q ∈ Rn×d, K ∈ Rn×d, and V ∈ Rn×d, which are called the query, key, and value
matrices, respectively. The self-attention mechanism then computes a weighted sum of the value
vectors, where the weights are determined by the dot product between the query and key vectors,
normalized by a scaling factor:

Attention(Q, K, V ) = softmax
(

QKT

√
d

)
V

here, softmax is the softmax function, which normalizes the dot product scores into a probability
distribution over the input sequence.

Encoder

The Transformer LLM uses a stack of self-attention layers in the encoder, which allows the model to
attend to different parts of the input sequence at different levels of abstraction. Each self-attention
layer consists of two sub-layers:

A multi-head self-attention layer, which applies the self-attention mechanism described above
to the input sequence, using different sets of query, key, and value matrices (known as "heads"). A
position-wise feedforward layer, which applies a non-linear transformation to each element of the
sequence independently. These sub-layers are connected through a residual connection and layer
normalization, which helps to prevent vanishing gradients and improves training stability.
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Figure 3. The paper which introduced ‘attention mechanisms’ in 2014.

Decoder

The decoder in the Transformer LLM is similar to the encoder, but also includes an additional
multi-head self-attention layer that attends to the output sequence generated so far. This allows
the decoder to use context from the output sequence to generate the next element in the sequence.

Training

To train the Transformer LLM, we typically use a variant of stochastic gradient descent (SGD) to
minimize a loss function that measures the discrepancy between the model’s predictions and the
true output. The loss function depends on the specific task and can be chosen based on the type
of data and desired performance metric.

During training, the weights of the model are updated using backpropagation, which computes
the gradient of the loss with respect to the model’s parameters. The use of layer normalization
and residual connections in the Transformer architecture helps to prevent vanishing gradients and
improve training stability.

Section F

SQL

For someone starting with learning data science, SQL (pronounced ‘sequel’) can be bit tricky.
There are two websites which are particularly nice to develop these skills:

Learn SQL
SQL Zoo

Order is crucial: Six Operations to Order: SFWGHO
These are first letters (to remember) of SELECT, FROM, WHERE, GROUP BY, HAVING,

and ORDER BY.

F.1 Main commands

• SELECT: The SELECT statement is used to retrieve data from one or more tables in a
database. You should master using SELECT to filter, sort, and group data using different
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functions such as WHERE, ORDER BY, and GROUP BY. Here is an example of a SELECT
statement:

SELECT column1, column2, column3 FROM table_name WHERE condition;

• In this example, column1, column2, and column3 are the names of the columns that you
want to retrieve data from, and table_name is the name of the table that contains the data.
The WHERE clause is optional but is used to specify a condition that must be met in order
for the query to retrieve data. Here’s an example that selects all records from a table called
‘customers’ where the customer’s age is greater than or equal to 18:

SELECT *
FROM customers
WHERE age >= 18;

• JOIN: The JOIN statement is used to combine data from two or more tables in a database.
You should master using JOIN to retrieve data from multiple tables and specify the type
of join (e.g. INNER, LEFT, RIGHT, FULL OUTER) as appropriate. An INNER JOIN
returns only the rows where there is a match between the columns in both tables. Here is
an example:

SELECT orders.order_id, customers.customer_name
FROM orders
INNER JOIN customers
ON orders.customer_id = customers.customer_id;

In this example, the orders table and the customers table are joined using the customer_id
column. The resulting table will only include the order_id and customer_name columns
where there is a match between the customer_id columns in both tables.

• LEFT JOIN: A LEFT JOIN returns all the rows from the left table and the matching rows
from the right table. If there is no match in the right table, the result will contain NULL
values. Here is an example:

SELECT customers.customer_name, orders.order_id
FROM customers
LEFT JOIN orders
ON customers.customer_id = orders.customer_id;

In this example, the customers table is the left table and the orders table is the right table.
The customer_id column is used to join the tables. The resulting table will include all the
rows from the customers table and the matching rows from the orders table. If there is no
match in the orders table, the order_id column will contain NULL values.
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• RIGHT JOIN: A RIGHT JOIN returns all the rows from the right table and the matching
rows from the left table. If there is no match in the left table, the result will contain NULL
values. Here is an example:

SELECT customers.customer_name, orders.order_id
FROM customers
RIGHT JOIN orders
ON customers.customer_id = orders.customer_id;

In this example, the orders table is the left table and the customers table is the right table.
The customer_id column is used to join the tables. The resulting table will include all the
rows from the orders table and the matching rows from the customers table. If there is no
match in the customers table, the customer_name column will contain NULL values.

• OUTER JOIN: An OUTER JOIN in SQL is used to return all the rows from one or both
tables, including the non-matching rows. There are two types of OUTER JOINs: LEFT
OUTER JOIN and RIGHT OUTER JOIN.

SELECT customers.customer_name, orders.order_id
FROM customers
LEFT OUTER JOIN orders
ON customers.customer_id = orders.customer_id;

* Now RIGHT OUTER JOIN

SELECT customers.customer_name, orders.order_id
FROM customers
RIGHT OUTER JOIN orders
ON customers.customer_id = orders.customer_id;

In this example, the orders table is the left table and the customers table is the right table.
The customer_id column is used to join the tables. The resulting table will include all the
rows from the orders table and the matching rows from the customers table. If there is no
match in the customers table, the customer_name column will contain NULL values. Some
databases may not support RIGHT OUTER JOINs, but you can achieve the same result by
using a LEFT OUTER JOIN and swapping the order of the tables.

• WHERE:

SELECT name, department, salary
FROM employees
WHERE department = ’Sales’ AND salary > 50000;

• GROUP BY:
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SELECT department, AVG(salary) as avg_salary
FROM employees
GROUP BY department;

• HAVING:

SELECT customer_id, SUM(quantity) AS total_quantity
FROM orders
GROUP BY customer_id
HAVING SUM(quantity) >= 50;

These are Window functions.

• HAVING:

ROW_NUMBER() \\
SUM()\\
RANK()\\
AVERAGE()\\
Basic query: SELECT column1, column2, ..., ####() OVER (ORDER BY column1)
AS row_num
FROM table_name;

Replace hashes by either four of these like RANK().

• UNION: Suppose we have two tables named “customers” and “employees”, both with
columns for “name” and “city”. We want to create a list of all people (both customers
and employees) who live in New York City. We can use the UNION operator to combine the
results of two SELECT statements, one for each table:

SELECT name, city
FROM customers
WHERE city = ’New York’
UNION
SELECT name, city
FROM employees
WHERE city = ’New York’;

• CREATE: The CREATE statement is used to create a new database table, view, or other
database objects. You should master using CREATE to create new tables, views, and other
database objects. Here’s an example of using the CREATE statement in SQL. Suppose we
want to create a new table called “customers” with columns for “id”, “name”, “email”, and
“phone”. We can use the CREATE statement to do this:

CREATE TABLE customers (
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id INT PRIMARY KEY,
name VARCHAR(50),
email VARCHAR(100),
phone VARCHAR(20)

);

INSERT INTO customers (id, name, email, phone)
VALUES (1, ’John Doe’, ’johndoe@example.com’, ’555-555-1234’);

• INSERT: As name suugests

INSERT INTO students (id, name, major, gpa)
VALUES (1234, ’John Doe’, ’Computer Science’, 3.5);

• UPDATE: As name suugests

UPDATE students
SET major = ’Mathematics’, gpa = 3.7
WHERE id = 1234;

• DELETE: This query below would remove the row with an ID of 1234 from the “students”
table. The DELETE statement specifies the name of the table we want to delete from,
followed by the WHERE clause to specify which rows we want to delete. In this case, we
want to delete the row with an ID of 1234, so we specify “WHERE id = 1234”.

DELETE FROM students
WHERE id = 1234;

SQL is case insensitive.

• find second highest salary: SELECT MAX(SALARY) FROM Employee WHERE SALARY <
(SELECT MAX(SALARY) FROM Employee);

• nth highest salary: Select Salary from EMPLOYEE order by Salary DESC limit n-1,1;

• select * from city where population > 100000 and CountryCode="USA"

• select * from city where ID="1661"

• SELECT NAME FROM CITY WHERE COUNTRYCODE = ’JPN’

• SELECT * FROM Student WHERE FirstName NOT LIKE ’A%’ – The following query returns
the rows in which FirstName do not start with A.

• SELECT * FROM Student WHERE FirstName NOT LIKE ’%d’ – The following query returns
the rows in which FirstName do not end with d.
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• select distinct(city) from station where city not REGEXP ’[̂AEIOU]’ AND city not
REGEXP ’[aeiou]$’; : Query the list of CITY names from STATION that do not start
with vowels and do not end with vowels. Your result cannot contain duplicates.

• select distinct(city) from station where city not REGEXP ’[̂AEIOU]’ OR city not
REGEXP ’[aeiou]$’; : Query the list of CITY names from STATION that either do not
start with vowels or do not end with vowels. Your result cannot contain duplicates.

• SELECT NAME FROM EMPLOYEE ORDER BY NAME ASC;: Write a query that prints a list of em-
ployee names (i.e.: the name attribute) from the Employee table in alphabetical order.

• SELECT NAME FROM EMPLOYEE WHERE SALARY > 2000 AND MONTHS < 10 ORDER BY EMPLOYEE_ID
ASC: Write a query that prints a list of employee names (i.e. the name attribute) for employ-
ees in Employee having a salary greater than 2000 per month who have been employees for
less than 10 months. Sort your result by ascending employee-id.

• ALTER TABLE celebs ADD COLUMN twitter_handle TEXT;: Add new column

• DELETE FROM celebs WHERE twitter_handle IS NULL;: Delete rows where one specific
column is empty

• SELECT SUM(v) FROM ELEMENTS: Sum Column v from table ELEMENTS

• SELECT
employee_id,
last_name,
first_name,
salary,
RANK() OVER (ORDER BY salary DESC) as ranking

FROM employee
ORDER BY ranking

In this example query, we will show a list of all employees ordered by salary (highest salary
first). The report will include the position of each employee in the ranking. RANK is a
function which arranges salary in DESC as ranking.

• WITH employee_ranking AS (
SELECT

employee_id,
last_name,
first_name,
salary,
RANK() OVER (ORDER BY salary DESC) as ranking

FROM employee
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)
SELECT

employee_id,
last_name,
first_name,
salary

FROM employee_ranking
WHERE ranking <= 5
ORDER BY ranking

Top 5 salary rankings.

•

• CREATE TABLE: creates a new table, INSERT INTO: adds a new row to a table, SELECT queries
data from a table, ALTER TABLE changes an existing table, UPDATE: edits a row in a table,
DELETE FROM deletes rows from a table.

Section G

Basic programming algorithms

There are different ways to sort a list. Some important ones can be remembered by mneumonic
ISBMQ. Insertion, Selection, Bubble, Merge, Quick. We denote time and space complexity as
C(·, ·)

• Insertion: Start with second element of the list and place it on left or right of first element.
Do this loop over elements similarly. C(N2, 1)

• Selection: Find minimum of list and place it first (assuming ascending sort). Then focus on
remaining and iterate. C(N2, 1)

• Bubble: This works by repeatedly swapping the adjacent elements if they are in the wrong
order. C(N2, 1)

• Merge: Divide and conquer. It divides the input array into two halves, calls itself for the two
halves, and then merges the two sorted halves. The merge(A, p, q, r) is a key process that
assumes that A[p..q] and A[q+1..r] are sorted and merges the two sorted sub-arrays into one.
C(N log N, N)

• Quicksort: QuickSort is also a divide and conquer algorithm. It picks an element as a pivot
and partitions the given array around the picked pivot. There are many different versions of
quickSort that pick pivot in different ways. N log N, log N
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Section H

Codility Exercises Solutions

Question 1: LongestPassword (see here)
Solution 1:

1 def solution(S):
2

3 longest = -1
4 n_letters = 0
5 n_digits = 0
6 n_others = 0
7

8 for char in S:
9 if char.isalpha():

10 n_letters += 1
11 elif char.isdigit():
12 n_digits += 1
13 elif char == " ":
14 # Check whether it’s a valid password.
15 if n_others == 0 and n_letters % 2 == 0 and n_digits % 2 == 1:
16 if longest < n_letters + n_digits:
17 longest = n_letters + n_digits
18

19 # Reset the counters for the next word.
20 n_letters = 0
21 n_digits = 0
22 n_others = 0
23

24 else:
25 n_others += 1
26

27 # Check whether the last word is a valid password.
28

29 if n_others == 0 and n_letters % 2 == 0 and n_digits % 2 == 1:
30 if longest < n_letters + n_digits:
31 longest = n_letters + n_digits
32

33 return longest

Question 2: Binary Gap (see here)
Solution 2:

1 def solution(N):
2 return len(max(format(N, ’b’).strip(’0’).split(’1’)))
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Section I

Interview questions

1. Q1: How to improve your model performance?
Answer: Some methods are – use validation methods, add more data, apply feature engi-
neering techniques (normalization, imputation etc.), compare multiple algorithms, hyperpa-
rameter tuning

2. Q2: What is difference between standardization and log transformation.
Answer: Standardization is the process of putting different variables on the same scale.
This process allows you to compare scores between different types of variables. Typically,
to standardize variables, you calculate the mean and standard deviation for a variable. Log
transformation is a data transformation method in which it replaces each variable x with a
log(x). Log-transform decreases skew in some distributions, especially with large outliers.
But, it may not be useful as well if the original distribution is not skewed. Also, log transform
may not be applied to some cases (negative values), but standardisation is mostly always
applicable except σ = 0.

3. Q3: How to deal with unbalanced binary classification?
Answer: In a classification task, there is a high chance for the algorithm to be biased if
the dataset is imbalanced. An imbalanced dataset is one in which the number of samples in
one class is very higher or lesser than the number of samples in the other class. To counter
such imbalanced datasets, we use a technique called up-sampling and down-sampling. In up-
sampling, we randomly duplicate the observations from the minority class in order to reinforce
its signal. The most common way is to resample with replacement. In down-sampling, we
randomly remove the observations from the majority class. Thus after up-sampling or down-
sampling, the dataset becomes balanced with the same number of observations in each class.

4. Q4: Pruning in Decision Tree?
Answer: Decision Trees are a popular machine-learning model for classification and regres-
sion tasks. They build a tree-like decision model based on the data’s features to predict the
output label of a given input sample. However, if the Decision Tree is allowed to grow too
large, it can become overly complex and may start to fit the training data too closely, a
phenomenon known as overfitting.

Pruning is a technique that can be used to reduce the size of a Decision Tree and prevent
overfitting. It involves removing nodes from the tree that are not contributing significantly
to the model’s accuracy. By pruning a Decision Tree, the model’s ability to generalize to new
data is improved, as the model is less likely to be overly complex and overfit the training set.
This is the primary purpose of pruning a Decision Tree.

In addition to improving the model’s ability to generalize to new data, pruning a Decision
Tree reduces the complexity of the model and makes it easier to interpret. By removing
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unnecessary nodes from the Decision Tree, the model becomes simpler and more transparent,
making it easier to understand and interpret.

Pruning also reduces the number of nodes and decision points the model needs to consider
during training, which can improve the model’s training speed and efficiency.

ALL QUESTIONS AND ANSWERS BELOW ARE FROM CHAT-GPT:

• What is overfitting and how can it be avoided? Overfitting is a common problem in
machine learning where a model is trained too well on the training data, and as a
result, it fits the noise or random fluctuations in the data as well. This leads to poor
performance of the model on the test data, where it fails to generalize well. Overfitting
can be prevented by using techniques such as regularization, cross-validation, and early
stopping.

• What is the difference between supervised and unsupervised learning? Supervised learn-
ing is a type of machine learning where the model is trained on labeled data, where the
input and output pairs are known. The goal of supervised learning is to learn a map-
ping function that can predict the output for new input data. Examples of supervised
learning algorithms include linear regression, logistic regression, decision trees, and neu-
ral networks. Unsupervised learning is a type of machine learning where the model is
trained on unlabeled data, where only the input data is known. The goal of unsuper-
vised learning is to discover patterns or structures in the data. Examples of unsupervised
learning algorithms include clustering, dimensionality reduction, and generative models.

• What is the difference between regression and classification?

• What is regularization and why is it important? Regularization is a technique used to
prevent overfitting in machine learning models. It involves adding a penalty term to
the loss function of the model, which discourages the model from fitting the noise or
random fluctuations in the data. The penalty term is typically a function of the model
parameters, such as the L1 norm or L2 norm of the weight vectors. Regularization can
be used in various machine learning models such as linear regression, logistic regression,
and neural networks.

• What are some common machine learning algorithms?

• What is the difference between a decision tree and a random forest?

• What is cross-validation and why is it used? Cross-validation is a technique used to
evaluate the performance of a machine learning model on a limited amount of data. It
involves splitting the data into k equally sized folds, and then training the model on k-1
folds and evaluating it on the remaining fold. This process is repeated k times, with
each fold being used once as the validation set. The performance of the model is then
averaged across the k runs. Cross-validation is useful for selecting hyperparameters,
comparing different models, and estimating the generalization performance of a model.
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• What is the bias-variance tradeoff? The bias-variance tradeoff is a fundamental concept
in machine learning that describes the relationship between the complexity of a model
and its generalization performance. Bias refers to the error introduced by the model’s
assumptions or simplifications, while variance refers to the error introduced by the
model’s sensitivity to small fluctuations in the data. A model with high bias is said to
underfit the data, while a model with high variance is said to overfit the data. The goal
is to find a model that achieves a balance between bias and variance that minimizes the
generalization error.

• What is gradient descent and how does it work?

• What is deep learning and how is it different from traditional machine learning?

• What is a convolutional neural network (CNN) and how is it used in image recognition?
A convolutional neural network (CNN) is a type of neural network used in deep learning
to process and analyze images. It uses convolutional layers that extract features from
the input image, followed by pooling layers that reduce the dimensionality of the output,
and finally fully connected layers that classify the image. CNNs are widely used in image
recognition tasks such as object detection, face recognition, and image segmentation.

• What is the ROC curve and how is it used to evaluate a classification model? The
ROC (Receiver Operating Characteristic) curve is a graphical representation of the
performance of a binary classification model. It illustrates the trade-off between the
true positive rate (TPR) and false positive rate (FPR) for different threshold values. In
a binary classification problem, we classify examples into two classes, such as "positive"
and "negative". The ROC curve is obtained by plotting TPR (also called sensitivity or
recall) on the y-axis and FPR on the x-axis.
To calculate TPR and FPR, we need to set a threshold that separates the positive and
negative examples predicted by the model. A threshold of 0.5 is often used as a default,
but this can be adjusted depending on the problem and the goals of the model.
The TPR is the proportion of true positive examples that are correctly classified as
positive by the model, while the FPR is the proportion of negative examples that are
incorrectly classified as positive. As the threshold is varied, different points on the ROC
curve are generated.
A perfect classifier would have a ROC curve that passes through the top-left corner of
the plot, with TPR = 1 and FPR = 0. In practice, most classifiers will have a ROC
curve that lies somewhere below this ideal line.
The area under the ROC curve (AUC) is a common metric used to evaluate the perfor-
mance of a binary classifier. AUC ranges from 0.0 to 1.0, with a higher value indicating
better classification performance. An AUC of 0.5 indicates random classification per-
formance, while an AUC of 1.0 indicates perfect classification performance.
In summary, the ROC curve provides a useful tool to visualize and evaluate the perfor-
mance of a binary classification model, and the AUC provides a single scalar value to
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summarize the overall performance.

• What is natural language processing (NLP) and how is it used in machine learning?

• What is reinforcement learning and how is it used in AI?

Section J

Statistics

Central Limit theorem: If X1, X2, · · ·XN are random samples drawn from a distribution (any)
with overall mean µ and variance σ2 and if X̄ is the sample mean of first n samples, then the
limiting form of distribution is Gaussian in n→∞ limit.
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