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1. Introduction

The state-of-the-art classical method to efficiently study clas-
sical/quantum spin systems in lower dimensions is undoubtedly
the tensor network method. This started with the realization that
the ground state of a one-dimensional system with local Hamilto-
nian can be written efficiently in terms of matrix product states
(MPS) which is then optimized using well-known algorithms. This
idea and some of its higher dimensional generalizations are now
routinely used for simulating quantum systems with low entangle-
ment [1]. There has been an alternate effort [2,3], more natural
to lattice field theory based on the Lagrangian or the partition
function, known as the tensor renormalization group (TRG). This
enables us to perform a version of the numerical approximation
of the exact renormalization group equations to compute the Eu-
clidean partition function by blocking the tensor network. If this
blocking (coarse-graining) is applied recursively, one generates a
description of the theory at increasing length scales accompanied
by a corresponding flow in the effective couplings. In addition to
the application of TRG to discrete spin models, where it was first
introduced, it has also been used to study spin models with con-
tinuous symmetry and gauge theories in two and higher dimen-
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sions [4-7]. We refer the interested reader to the review article [8]
to start a reference trail.

The prospect of carrying out high-precision TRG calculations
as an alternative to the standard Monte Carlo based lattice gauge
computations has several motivations. The most important is the
ability to study complex-action systems in the presence of finite
chemical potential or topological 6-term. Since the TRG algorithm
does not make use of sampling techniques, they do not suffer
from the sign problem [5,9,10]. However, the trade-off seems to
be the fact that truncation of TRG computations (which cannot be
avoided) does not always yield the correct behavior of the under-
lying continuum field theory.

A major fraction of the computation time is the contraction of
the tensors during successive iterations. An efficient way of doing
this can lead to substantial improvements which becomes crucial
when studying higher-dimensional systems. The explorations in
four dimensions using ATRG [11] and HOTRG [3] have made use
of parallel CPU computing to speed up the computations and have
obtained good results [12].

The unreasonable effectiveness of tensors is not just restricted
to de ibing the physical systems. In machine learning applications,
tensors are widely used to store the higher-dimensional classical
data and train the models. Due to such widespread implications of
this field, several end-to-end software packages have been devel-
oped and one has now access to various scalable packages such as
TENSORFLow and PYTorcH which can be also be used for Physics
computations. PYTorcH [13] is a Python package that provides
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Fig. 1. Schematic representation of the higher-order TRG implemented in this work. The diagram should be viewed from top to bottom, left to right with the first two panels
denoting the coarse-graining along two directions. The first step combines four initial tensors (denoted To) as shown to construct M;jy. Then we combine the left and right
indices to construct a matrix and take the SVD of that matrix to obtain the projector U. We then combine the tensors along a particular direction to obtain a coarse-grained
tensor T. Then with this tensor, we perform similar steps along the orthogonal direction to obtain T;. This constitutes one step of coarse-graining. Doing this N — 1 times
more and then contracting the indices gives us an approximation to Z with periodic boundary conditions.

some high-level features such as tensor contractions with strong
GPU acceleration and deep neural networks built on a reverse-
mode automatic differentiation system which is an important step
used in backpropagation, a crucial ingredient of machine learning
algorithms. Though there have been some explorations of MPS ten-
sor network implementations using CUDA (a parallel computing
platform that allows programmers to use NVIDIA GPUs for general-
purpose computing) [14], it is not widely appreciated or explored
in the real-space TRG community to our knowledge. CUDA pro-
vides libraries such as cuBLAS and cuDNN that can leverage tensor
cores and specialized hardware units that perform fast contractions
with tensors.

In this paper, we demonstrate that a simple modification of the
code using PyTorcH with CUDA and opt einsum [15] improves
the runtime by a factor of ~ 12x with D =89 for the generalized
XY model (described in Sec. 3). We also present results for the
Ising model and the 3-state Potts model as references for the in-
terested reader and how one can obtain state-of-the-art results in
less computer time. We refer to the use of PYTorcH for TRG com-
putations with CUDA as ToRCHTRG and the code used to produce
the results in this paper can be obtained from Ref. [16].

2. Algorithm and TORCHTRG discussion

We use the higher-order TRG algorithm based on higher-order
singular value decomposition (HOSVD) of tensors. This algorithm
has been thoroughly investigated in the last decade and we re-
fer the reader to the recent review article [8] for details. The goal
of this algorithm is to effectively carry out the coarse-graining
of the tensor network with controlled truncation by specifying a

local bond dimension D which is kept constant during the en-
tire algorithm. We show one full iteration of coarse-graining using
higher-order TRG algorithm in Fig. 1. The first step is to combine
four initial tensors (denoted To) as shown to construct Mjji;. Then
we combine the left and right indices to construct a matrix and
take the SVD of that matrix to obtain the projector U. We then
combine the tensors along a particular direction to obtain a coarse-
grained tensor T. Then we take this tensor and perform similar
steps along the orthogonal direction to obtain Tq. This constitutes
one step of coarse-graining. Doing this N — 1 more times and then
contracting the indices with periodic boundary conditions gives us
the approximation to Z. We show the algorithm in Fig. 1 for the
reader. The computational complexity for the higher-order TRG al-
gorithm scales as 0(D*~1) for d-dimensional Euclidean systems.
The most expensive part of HOTRG computations (especially for
higher dimensions) is the contraction of tensors with some fixed
truncation D. This is needed to keep the growing size fixed to a
reasonable value depending on the resources. The ratio of time
complexity between tensor contraction and SVD is O(D*~7). In
an earlier work by one of the authors [17], to perform the ten-
sor contractions, the ncon Python library was used. There is an
equivalent way of doing these contractions which has been exten-
sively used in machine learning and is known as opt_einsum
[18] which was used for standard CPU computations in [19]. In
this work, we make use of additional capabilities of opt einsum
by performing these contractions on a GPU architecture without
explicitly copying any tensor to GPU device. For this purpose,
a more performant backend is required which requires convert-
ing back and forth between array types. The opt einsum soft-
ware can handle this automatically for a wide range of options
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such as TENSORFLOW, THEANO, JAX, and PYTorcH. In this work, we
use PYTorcH on NVIDIA GeForce RTX 2080 Ti. The use of pack-
ages developed primarily for machine learning like PYTorcH and
TENSORFLOW to problems in many-body Physics is not new. TEN-
sorRFLow was used to study spin chains using tree tensor net-
works [20] based on the software package developed in Ref. [21].
However, we are not aware of any real-space tensor renormaliza-
tion group algorithms which have made use of GPU acceleration
with these ML/Al-based Python packages and carried out system-
atic study showing the improvements. Another advantage of using
PYTorcH is the ability to carry out the automatic differentiation
using: useful in
computing the derivatives similar to that in Ref. [22]. The availabil-
ity of additional GPUs also accelerates the program substantially as
we will discuss in the next section. The main steps involving the
conversion to the desired backend (if CUDA is available) and per-
forming the coarse-graining step are summarized below:

torch.tensor (T, requires grad = True)

1. Start with initializing all the tensors in the program as
torch CPU tensors.

2. For tensor contractions, we use the library -
opt_einsum torch which utilizes GPU cores for contrac-

tions and returns a torch CPU tensor [15].

3. We use the linear algebra library available within torch i.e.,
torch.linalg for performing SVD and other basic opera-
tions.

Since the tensor contractions are carried out on GPU, some fraction
of the memory load on the CPU is reduced, and hence the pro-
gram becomes more efficient. Furthermore, we have observed that
as the architecture of the GPU improves, the computational cost
improves further. We used opt_einsum since it can significantly

cut down the overall execution time of tensor network contrac-
tions by optimizing the order to the best possible time complex-
ity and dispatching many operations to canonical BLAS or cuBLAS
which provides GPU-accelerated implementation of the basic lin-
ear algebra subroutines (BLAS) [18,23]. The order of contracting
tensors is an important consideration to make in any quantum
many-body computations with tensors. We revisit this issue in
Appendix A and show how they significantly differ in computa-
tion times. We show some code snippets with explanations below
for the interested reader. The program requires three major li-
braries: numpy, scipy,torch which we import at the start. We
also check whether we can make use of GPU i.e., whether CUDA
is available. If it is available, use cuda == True is set for the

entire computation.
1 import numpy as np

import scipy as sp
import torch

w N

6 use cuda = torch.cuda.is available ()

~

If CUDA is available, we print the number of devices, names,
and memory and import the planner for Einstein’s summa-
tion (tensor contractions). Note that the planner from Ref. [15]

implements a memory-efficient einsum function using Py-

Computer Physics Communications 294 (2024) 108941

TorcH as backend and uses the opt einsum package to op-

timize the contraction path to achieve the minimal FLOPS. If
use cuda == False, then we just import the basic version

of the opt einsum package as contract . The notation for

contract and CUDA based ee.einsum is similar. To compute
Aijlequl — C,‘pkq, we do:

C = ee.einsum(’ijkl,pjqgl->ipkqg’, A, B) with
use_cuda == True O

C = contract (’ijkl,pjgl->ipkqg’, A, B) otherwise.

1 1f use_cuda:

2 print ( ' _CUDNN VERSION: ',
torch.backends.cudnn.version () )
print (* Number CUDA Devices:’,
torch.cuda.device count())

w

4 print (* CUDA Device Name:’,
torch.cuda.get device name(0))
5 print (' CUDA Device

TotalMemory [GB] :/,
torch.cuda.get device properties(0).
total memory/le9)

12 from opt_ einsum torch import
EinsumPlanner

13

14 ee =
EinsumPlanner (torch.device(’cuda:0’),
cuda _mem limit = 0.8)

15

16 else:

17 from opt einsum import contract
18

One thing to note is that we have to specify the CUDA memory
limit for the planner. This parameter can be tuned (if needed) but
we have found that a value between 0.7 and 0.85 usually works
well. Note that this can sometimes limit the maximum D one can
employ in TRG computations. So, it should be selected appropri-
ately if CUDA runs out of memory. The choice of this parameter
and the available memory can result in errors. A representative
example is:

RuntimeError: CUDA out of memory.

Tried to allocate 2.25 GiB (GPU 0; 10.76 GiB
total capacity; 5.17 GiB already allocated;
2.20 GiB free; 7.40 GiB reserved in

total by PyTorch) If reserved memory is >>
allocated memory try setting

max_split _size mb to avoid fragmentation.

We show code snippet to address this error below.

1

2 os.environ["PYTORCH CUDA ALLOC CONF"] =
"max split size mb:<size here>"
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(&3 TN O]

ee =
EinsumPlanner (torch.device('cuda:0"'),
cuda _mem limit = 0.7)

The user can also completely skip the memory allocation and
run without specifying. It should not affect the performance signif-
icantly. In implementing TORCHTRG, we explored four models that
can be selected at run time by the user. The choices are:

1 models allowed = [’Ising’,
"Potts’,'XY’, ’'GXY’]

There are four command-line arguments: temperature 1/,
bond dimension D, number of iterations, and the model. An ex-
ample of execution is: python 2dTRG.py 2.27 64 20 Ising .
Based on the model and the parameters, it constructs the ini-
tial tensor for the coarse-graining iterations to commence. It is
straightforward to add other models or observables and make use
of the basic CUDA setup presented here. In TORCHTRG, we have
simplified the code for a non-expert to the extent that a single
coarse-graining step which takes in a tensor and outputs trans-
formed tensor and normalization factor is 23 lines long and
can accommodate different architectures. We wrap all commands
which can potentially make use of CUDA acceleration i.e., contrac-
tions etc. inside use cuda conditional statement. We show this

part of the code below:

1 def SVD(t, left indices, right indices,
D) :

2 T = torch.permute (t,
tuple(left indices + right indices))
if use cuda else np.transpose(t,
left indices + right indices)

3 left index sizes = [T.shapeli] for
i in range(len(left indices))]
4 right index sizes = [T.shape[i] for

i in range(len(left indices),
len(left indices) +
len(right indices))]
> xsize, ysize =
np.prod(left index sizes),
np.prod(right index sizes)
6 T = torch.reshape(T, (xsize,
ysize)) if use_cuda else
np.reshape (T, (xsize, ysize))
U, , _ = torch.linalg.svd(T,
full matrices=False) if use cuda
else sp.linalg.svd(T,
full matrices=False)

~

8 size = np.shape (U) [1]
9 D = min(size, D)
10 U = U[:, :DI]

11 U = torch.reshape (U,
tuple(left index sizes + [D])) if
use_cuda else np.reshape (U,

left index sizes + [D])

return U

AW

def coarse graining(t):
Tfour =
ee.einsum(’jabe,iecd, labf,kfcd->ijkl’",
t, £, t, t) if use cuda else
contract ('’ jabe,iecd, labf,kfcd->1jkl’,
t, t, t, t)

(&)
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Fig. 2. The runtime in seconds for the GXY model with different D on lattice of
size 230 x 230 with CPU version and TorcHTRG. We used maximum D = 111 with
TorRcHTRG and D = 89 with the standard CPU version to compare the timings. Note
that these timings are just for the computation of Z without any impure tensor
computations. If we insert impure tensors (say to compute magnetization) then for
D =101, the run time on a single GPU increases to ~ 19, 000 seconds compared to
15, 200 seconds for a pure network.

16 U = SVD(Tfour, [0,1], [2,3],D_cut)

17 Tx =
ee.einsum(’abi,bjdc,acel,edk->ijkl’,
U, t, t, U) if use cuda else
contract (’abi,bjdc,acel,edk->ijkl’,
U, t, t, U)

18 Tfour =
ee.einsum(’aibc,bjde,akfc, flde->1jkl’,
Tx,Tx,Tx,Tx) 1if use cuda else
contract (’aibc,bjde,akfc,flde->1jkl’,
Tx,Tx, Tx, TX)

19 U = SVD(Tfour, [0,1], [2,3],D_cut)

20 Txy =
ee.einsum(’abj,iacd, cbke,del->ijkl’,
U, Tx, Tx, U) if use cuda else
contract (’abj,iacd, cbke,del->ijkl’,
U, Tx, Tx, U)

21 norm = torch.max(Txy) if use cuda

else np.max (Txy)

Txy /= norm

return Txy, norm

NN
W N

3. Models and results

In this section, we show the results obtained using TORCHTRG.
We first show the run time comparison on CPU and CUDA archi-
tectures for the generalized XY model, which is a deformation of
the standard XY model. Then, we discuss the TRG method as ap-
plied to the classical Ising model and discuss how we converge to
a desired accuracy faster. In the last part of this section, we dis-
cuss the g-state Potts model with ¢ =3 and accurately determine
the transition temperature corresponding to the continuous phase
transition.

3.1. GXY model
The generalized XY (GXY) model is a spin nematic deformation

of the standard XY model [24]. The Hamiltonian (with finite exter-
nal field) is given by:
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Fig. 3. The magnetization of the XY model at various finite magnetic fields h at the
critical temperature on lattice size of 236 x 236, The fit is 0.877(3)h1/1>-1147)

H=—A) cos(t —6)) —(1—-A)
(ij)
x Y cos2(6; — 0j)) —h Yy _cost;, (3.1)

(ij) i
where we follow the standard notation (ij) to denote nearest
neighbors and 6; € [0,2). Two limits are clear cut: A =0 cor-
responds to a pure spin-nematic phase and A =1 is the standard
XY model. We will report on the ongoing tensor formulation of
this model in a separate work [25].

To test our GPU-acceleration, we have focused on two mod-
els. One with discrete symmetry (Ising model) and the other with
continuous global symmetry (GXY). Since the indices for the initial
tensor in GXY model takes infinite values, a suitable truncation is
needed from the first step of coarse-graining while for the Ising
model, the first few iterations can be carried out exactly due to
the size of the initial tensor.

For the GXY model in this work, we will only consider h = 0.
We performed tensor computations for a fixed value of A =0.5
and for different D. The computation time for this model scaled
like ~ D>4® with TorcHTRG while the CPU timings were close
to ~ D7 which is consistent with the expectation of higher-order
TRG scaling in two dimensions. Note that since the cost of SVD
scales like ~ D®, the observed computation time complexity also
signals the fact that even SVD computations are accelerated by
GPU, though they are sub-dominant compared to the tensor con-
tractions.

We show the comparison between the run times showing the
CUDA acceleration with TorcHTRG in Fig. 2. We used one and two
CUDA devices available with NVIDIA GeForce RTX 2080 Ti. We
found that the latter is a factor of about 1.5x faster. In addition,
we also tested our program on 4 CUDA devices with NVIDIA TITAN
RTX! and found a further speedup of ~ 1.3x (not shown in the
figure) over two CUDA RTX 2080 Ti for range of D. Therefore, it is
clear that with better GPU architectures in the future, TRG com-
putations will benefit significantly from moving over completely to
GPU-based computations.

Using our GPU-enhanced code, we can access larger D and
there is possibility of computing the critical exponents accurately.
We fixed A =1 in Eq. (3.1) and computed the critical exponent
§ defined as M ~ h'/® at T = T. = 0.89290 [17] and obtained
8 =15.11(17) compared to the exact result of 15. The results are
shown in Fig. 3 with D =111. To ensure convergence in the bond

1 We thank Nobuo Sato for access to the computing facility.
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dimension, we also took D = 131 and found that difference in
magnetization between the two D is ~ 1078,

3.2. Ising model

In the previous subsection, we compared the run time on the
GXY model, however, we also want to test the algorithm with
opt_einsum and GPU acceleration on a model with a known so-

lution. In this regard, we considered the Ising model on a square
lattice which admits an exact solution. This makes it a good can-
didate for the sanity check of the algorithm and the convergence
properties. We will check the accuracy of the higher-order TRG
method by computing the free energy which is the fundamen-
tal quantity accessible in TRG computations. It can be obtained
directly in the thermodynamic limit from the canonical partition
function Z as —TInZ. The exact result for the free energy of the
Ising model is given by:

f S In(2cosh(2)) — k2 4F 113 %'16162 (32)
E="3 l2227 T

where x = sinh(28)/(2 cosh? 2B) and ,Fq is the generalized hy-
pergeometric function and g is the inverse temperature. We define
the error in TRG computation of the free energy as:

ﬂ):’fTRG_fE" (33)
f fe
We show the results for this observable for various T in the left
panel of Fig. 4 and at fixed T = T, for various D (run time) in the
right panel of Fig. 4. Each data point in the left panel of Fig. 4 took
about 2000 seconds on 4 cores of Intel(R) Xeon(R) Gold 6148. The
largest deviation we observed (as expected) was at T =T, ~ 2.269
where [8f)/f] was 1.91 x 1072, We could not find any other
algorithm with such accuracy for the same execution time. Note
that we did not even use the CUDA acceleration for this compari-
son. We used a bond dimension of D =64 and computed the free
energy on a square lattice of size 229 x 22°, In order to ensure
that the result has converged properly, we also studied lattice size
225 % 225 and obtained the same deviation from the exact result.
Another useful quantity to compute is the coefficient o defined
as |(8f)/fl «1/D¥. Different TRG algorithms have different o and
a higher value represents faster convergence with the bond dimen-
sion D. We show the error as a function of D at T = T for Ising
model in the right panel of Fig. 4. Doing a fit of the numerical fit
of the data for D € [48,114] gave oo = 4.12(2). This exponent has
close relation to the scaling of entanglement entropy of the critical
¢ = 1/2 Ising model which in turn is related to the finite D scal-
ing of correlation length given by &p ~ D¥ [26]. It is argued that
the error in free energy scales like ~ £~¢ for d = 2 dimensional
Ising model with maximum error at T = T, where the correla-
tion length diverges. This implies that |(8f)/f| o« D~2¢. Using this
we get kK ~ 2.06 which is very close to the expected’ exponent
Kk ~ 2.03425. For this model, we also compared our numerical
results with two other recent works. The triad second renormal-
ization group introduced in [27] can only get to an accuracy of
109 at T = T, with about 10° seconds of CPU time which roughly
translates to our CPU code being about 30 times faster to get the
same accuracy for the Ising model. The dTRG method of Ref. [22]
does not have an accuracy of 10~ at the critical temperature even
with D = 64, 128 though admittedly it behaves much better away
from critical temperatures. We compared the CPU and GPU code
for the Ising model and the results are summarized in Table 1. We

2 We thank the referee for this suggestion.
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Table 1
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Timings (in seconds) for the HOTRG algorithm for Ising model for 220 x 220 lattice at T = T
using CPU and GPU.

D ‘%‘ A100 RTX 2080 4 CPUS
84 6.6 x 1010 6004 9171 11714
94 44x10°10 11960 19305 29376
104 29x10°10 21376 36159 58715
109 2.4x10710 28942 46350 80578
%1077
°O O D=064 107 o 0 T=T.
1.75 o
o
o
1.50 o ©
o
o
1078
—1.25 _
= = &
—~ N
5 1.00 = S
== o o - \a\
0.75 1079 O
Eoe
o ~
0.50 o o o
\O*Q~
0.25 o o =
10—1(]
223 224 225 226 227 228 229 230 231 2 40 60 0 100 120
T D

Fig. 4. Left: The deviation of the TRG results from the exact result (3.2). Right: The dependence of the error on D and therefore on the execution time at T = T,.

found that using NVIDIA A100° had much better performance than
RTX 2080.

3.3. Three-state Potts model

As a generalization of the Ising model, we can also consider the
classical spins to take values from 1,2,---,q. This is the g-state
Potts model which is another widely studied statistical system. In
particular, we consider the case ¢ =3 as an example. On a square
lattice, this model has a critical temperature that is exactly known
for all q. The transition, however, changes order at some q and
the nature of the transition is continuous for q < 4 [28]. The exact
analytical result for T, on square lattice is:

1
T+ /9

If we restrict to g = 2, we reproduce the Ising result (up to a factor
of 2). The g-state Potts model has been previously considered using
TRG methods both in two and three dimensions in Refs. [19,29,30].
The initial tensor can be written down by considering the q x g
Boltzmann nearest-neighbor weight matrix as:

(3.4)

c

ef ifi=j

1. (3.5)

Wi = .
otherwise,

and then splitting the W tensor using Cholesky factorization,
ie, W =LLT and combining four L's to make Tijiw as Tiju =
LigLipLicLig. Note that this tensor can be suitably modified to admit
finite magnetic fields. We first study the convergence of density of
In(Z) with inverse bond dimension. The result is shown in Fig. 5.
In the absence of external magnetic field, this model has a phase
transition at T, ~ 0.99497 and we check this using TORCHTRG. The
results obtained are shown in Fig. 6.

3 This is currently the state-of-the-art GPU used extensively to train large lan-
guage models (LLM) like GPT-4.

= 0.3700 .
0.3675 “
0.3650 "

0.3625 AN

0.006  0.008 0.010 0.012 0.014

1/D

0.016  0.018  0.020

Fig. 5. The convergence of the density of In(Z) with inverse of bond dimensions at
T, for the three-state Potts model on lattice of size 230 x 239, The quadratic fit gives
In(Z)/V =0.3822(2) in the D — oo limit.

As mentioned before, a prime motivation of our work was to
access large bond dimensions to accurately determine the criti-
cal exponents. We computed these exponents for the XY model
in Sec. 3.1 and now we determine critical exponent o for the
three-state Potts model. Taking the zero-field limit, we look at the
behavior of the specific heat as T — T. Defining t = (T — T.)/T,
we fit the specific heat (as T — 0) using the standard form:
In(Cy) =8 —aln|t|

= Cyo|t|™. (3.6)

To compute the specific heat, we compute the second derivative of
the partition function using the standard finite-difference method.
We fit the numerical data with (3.6) to obtain the critical exponent
o taking 10% error in specific heat. Using TORCHTRG, we get o =
0.38(5) and 0.34(7) respectively as shown in Fig. 7 by fitting the
data for T < T, and T > T, respectively. Our result is consistent
with the known result of & =1/3 [31].
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Fig. 6. The internal energy (E) and specific heat (Cy) for the ¢ = 3 Potts model with
D =64 on a lattice of size 22° x 220, The continuous transition from the peak of
specific heat is consistent with the exact analytical result. Each data point in the
plot took about 1300 seconds using TORCHTRG on 2 CUDA devices.
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Fig. 7. The determination of the critical exponent « for lattice of size 230 x 239 with
D=111.

4. Summary

We have described an efficient way of performing tensor renor-
malization group calculations with PyTorcH using CUDA. For the
two-dimensional classical statistical systems we explored in this
work, there was a substantial improvement in the scaling of com-
putation time with the bond dimension. In particular, the results
show that there is ~ 8x speedup for D = 89 for the generalized
XY model on 239 x 230 lattice using a single GPU which increases
to ~ 12x using two GPUs. For a larger bond dimension of D = 105,
there is an estimated ~ 15x speedup. The scaling of computation
time scales like ~ O(D®) with GPU acceleration which is to be
compared with the naive CPU scaling of ~ 0(D”) in two dimen-
sions. This speedup means that one can explore larger D using
CUDA architecture which is often required for accurate determina-
tion of the critical exponents as we have demonstrated for the XY
and Potts model. We envisage that the CUDA acceleration would
also help TRG computations in higher dimensions in addition to
the two (Euclidean) dimensions considered in this work. There
have not been many explorations in this direction but we be-
lieve that in the future, we would see extensive use of the GPU
resources. A potential bottleneck in the use of GPUs for TRG com-
putations is the memory availability. This can often cause errors
and severely limit the scope of the numerical computations. Partly
due to this, we have not been able to significantly speed up any
three-dimensional models yet though it appears to be possible.

Computer Physics Communications 294 (2024) 108941

There are several other directions that can be pursued such as
implementing a C/C++ version with opt_einsum to have better

control of the available memory while utilizing the CUDA acceler-
ation. We leave such questions for future work.
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Appendix A. Contraction of network - different methods

In this Appendix, we elaborate on the optimized sequence of
contraction order when dealing with complicated tensor networks.
In Fig. 8, we show two different contraction pattern that yields
different time complexity. Let us start with two rank-three (each
with D3 elements) and one rank-two tensor (D2 elements). Sup-
pose we want to contract three pairs of indices and obtain a final
tensor of rank-two as shown. If we follow the blue-marked re-
gions in the order 1 and 2 as mentioned, the cost will be 0 (D%).
However, if we rather choose to contract the bond starting with
the pink blob, then this step would be 0(D?) followed by 0(D%)
steps leading to overall time complexity of O(D?). Hence, choos-
ing an optimum sequence is very important for practical purposes.
Fortunately, this is something opt einsum and ncon do fairly

well. The efficient evaluation of tensor expressions that involve
sum over multiple indices is a crucial aspect of research in several
fields, such as quantum many-body physics, loop quantum gravity,
quantum chemistry, and tensor network-based quantum comput-
ing methods [32].

The computational complexity can be significantly impacted by
the sequence in which the intermediate index sums are performed
as shown above. Notably, finding the optimal contraction sequence
for a single tensor network is widely accepted as NP-hard prob-
lem. In view of this, opt einsum relies on different heuristics

to achieve near-optimal results and serves as a good approxima-
tion to the best order. This is even more important when we
study tensor networks on non-regular graphs or on higher dimen-
sional graphs. We show a small numerical demonstration below.
We initialize a random matrix and set a contraction pattern op-
tion and monitor the timings. We find that all three: tensordot ,

ncon, opt_einsum perform rather similarly. The slowest is
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Q
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Fig. 8. Schematic representation of two ways of contracting a network. The cost
is 0(D*) if we follow the order of blue-shaded regions as numbered. However, if
we start by contracting the pink link first, then the leading cost will be 0 (D). (For
interpretation of the colors in the figure(s), the reader is referred to the web version
of this article.)

np.einsum when the optimization flag not set (i.e., false). How-

ever, since we are interested in GPU acceleration in this work, we
use opt_einsum which has better support to our knowledge and
is also backend independent. We also compare its performance for
a specific contraction on CPU and with torch on CUDA.

1 import numpy as np

2 from opt einsum import contract

3 from ncon import ncon

4

5 i, j, k, 1 = 80, 75, 120, 120

6 A = np.random.rand (i, j, k, 1)

7 B = np.random.rand(j, i, k, 1)

8

9 %timeit np.tensordot (A, B, axes=([1,0],
[0,11))

10 # 2.72 s \pm 38.3 ms per loop

11

12 %$timeit np.einsum('ijkl,jiab->klab', A,
B)

13 # WARNING: Never use this without
optimization.

14 # Slower by factor of 500x or so! Not
considered.

15 # We can turn the optimize flag as
below.

16

17 %timeit np.einsum('ijkl,jiab->klab', A,
B, optimize=True)
18 # 2.75 s \pm 40.2 ms per loop

19

20 %timeit contract('ijkl,jiab->klab', A,
B)

21 # 2.69 s \pm 40.9 ms per loop

22

23 %timeit ncon((A, B), ([1,2,-1,-2],
[2,1,-3,-4]1))

24 # 2.37 s \pm 20 ms per loop

25

26 i, j, k, 1 = 200, 100, 80, 80

27 A = np.random.rand(i, j, k, 1)
28 B = np.random.rand(j, i, k, 1)
29

30 import torch

31 from opt einsum torch import
EinsumPlanner

32 ee =
EinsumPlanner (torch.device ('cuda:0"'),
cuda mem limit = 0.7)

33
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34 %timeit contract('ijkl,jiab->klab', A,
B)

35 # 6.57 s \pm 80.7 ms per loop [on CPU]

36

37 %timeit ee.einsum('ijkl,jiab->klab', A,
B)

38 # 3.76 s \pm 16.9 ms per loop [on CUDA]

39 # For this single contraction, we see a
factor of about 1.7!
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