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Abstract We propose additional tests of holography by studying supersymmetric Wilson loops in p+1-
dimensional maximally supersymmetric Yang–Mills (SYM) theories on the lattice in the large N limit.
In the dual gravity description, this computation involves calculating the area of a fundamental string
worldsheet in certain Type II supergravity backgrounds. Though thermodynamic observables have been
computed on the lattice using Monte Carlo methods and agree with the supergravity results in various
dimensions, not much has been done for the gauge-invariant operators such as the Wilson loop. We provide
analytical predictions for these loops for various non-conformal Dp-brane background cases with p ≤ 2
in the large N limit and comment on how these can be computed on non-orthogonal lattices in various
models.

1 Introduction

The holographic conjecture (the duality between gauge
and gravity) has been one of the greatest advances of
the 3 decades. It relates a theory of quantum gravity
in anti-de Sitter (AdS) spacetime to a supersymmet-
ric gauge theory on the boundary. There were signs of
dimensional reduction at play in quantum gravity [1],
and a concrete proposal relating Type IIB string the-
ory on AdS5 times S5 to a four-dimensional supercon-
formal N = 4 SYM was proposed in 1997 and is now
known as AdS/CFT conjecture. Soon after, this duality
was also extended to admit non-conformal dimension-
ally reduced versions of N = 4 SYM that are dual to
near-extremal, the near-horizon limit of Dp-branes [2]
in some well-defined geometry. These ideas were par-
tially motivated by the work of Witten [3] where it was
argued that the low-energy theory describing a system
of N parallel Dp-branes in flat space is the dimensional
reduction of ten-dimensional N = 1 SYM theory down
to p + 1 dimensions. In the case of N D0-branes, this
gives the famous BFSS model [4].

While the four-dimensional gauge theory enjoys sev-
eral unique properties which facilitate the setting
to check holography in detail, such tools cannot be
extended to lower dimensions. The lower dimensional
gauge theories with maximum supersymmetry content
are much more complicated, partly because of their
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non-integrable and non-conformal nature. Therefore,
the availability of a limited set of tools is a major hin-
drance to exploring holography for a wide class of theo-
ries. One of the few known numerical tools which have
been used in the last decade to address this issue is
to apply the ideas from lattice gauge theory to study
the large N , strongly coupled sector of these theories.
This application of lattice gauge theory to study super-
symmetric Yang–Mills (SYM) theories have undergone
substantial progress in the last 2 decades, largely moti-
vated by this goal of understanding holography. It is not
the plan to provide an extensive review of this here, but
good progress which has resulted is due to a beautiful
amalgamation of ideas from twisting of supersymmet-
ric theory to obtain a topological description, idea of
integer-form spinors, and some enhanced point group
symmetry of non-hypercubic lattices. The case of four
dimensions is certainly the most challenging because of
its superconformal nature and absence of length scales.
Also, the dimensionality and requirement of large N are
major problems even with parallelized software which
are employed. Hence, it is reasonable to say that the
four-dimensional superconformal N = 4 SYM theory
on the lattice at large N is still mostly out of reach,
but, the lower dimensional theories have been explored
and qualitative agreement with the thermodynamics of
black branes through holography has been established
[5–7]. These numerical computations typically use sev-
eral million hours of CPU time in order to reliably take
the large N limit and perform the continuum extrapo-
lations.

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjs/s11734-023-00768-x&domain=pdf
http://orcid.org/0000-0003-2933-0102
mailto:raghav.govind.jha@gmail.com


356 Eur. Phys. J. Spec. Top. (2023) 232:355–358

For the dimensionally reduced theories with dual
gravity interpretations, various groups have studied the
thermodynamics and thermal phase transitions and
have been reasonably successful on the lattice, but
much more admittedly remains to be done. One of
the drawbacks is that not many observable and cor-
relation functions of gauge-invariant operators have
been numerically computed. The eventual goal is to
extend these non-perturbative checks to more compli-
cated observables that have not been studied on the
lattice. These computations are necessary if one has
to claim precision checks of holography across various
dimensions. In this work, we consider the Wilson loop
operator and argue that we can determine the radius
of the black hole dual geometry from this observable in
various Dp-brane models. This type of computation was
first discussed in [8] using methods based on Gaussian
approximation and was later studied using numerical
methods for p = 0 case in [9] for maximum N = 17. It
is surprising that this computation has not been per-
formed with improved resources and state-of-the-art
methods where N = 32 have been reached [10]. The
extension of this program to higher dimensional p + 1-
dimensional SYM theories is not straightforward. This
is partly due to the increased computational resources
with dimensionality and the lattices used for discretiza-
tion of these theories, which are not the standard hyper-
cubic lattices.

2 Type II supergravity and Wilson loops

The holographic duality states that at finite tempera-
tures, there is a dual Type IIA (p even) or IIB (p odd)
gravity dual description of maximally supersymmetric
p+1-dimensional SYM in terms of the decoupling limit
of Dp-branes. In this article, we will restrict ourselves to
p < 3. The p = 3 case which is conformal has been well
studied. For p > 3, the supersymmetric gauge theory is
non-renormalizable and the computation works in a lit-
tle different way, see Ref. [2] for those cases. In the large
N , strong coupling limit of field theory this reduces
to supergravity (SUGRA) where the string frame near
horizon, near extremal metric takes the form:

ds2 =α′
(
κdt2 +

U (7−p)/2

√
dpλ

dx2
p

+ κ−1dU2 +

√
dpλ

U (3−p)/2
dΩ2

8−p

)
, (1)

where κ =
[
1 −

(
U0
U

)7−p]
U (7−p)/2/

√
dpλ, dp =

27−2pπ
1
2 (9−3p)Γ

(
7−p
2

)
and α′ is related to inverse of

string tension. The coordinate in the radial direction,
U , is usually identified with some energy scale corre-
sponding to the scalars in the SYM theory while the
horizon of the dual geometry is at U = U0 and is related
through some geometrical factors to black brane tem-
perature.

This dual description breaks down outside some cou-
pling range when p < 3 and we can only compute
the supergravity predictions for Wilson loop operator
when the loop size is big enough [11], however, one can
still use the description of classical string worldsheets
in some well-defined SUGRA background to compute
these loops. The region where it is valid is related to p
and given by: 1 � λβ3−p � N10−2p/(7−p). This can be
obtained by demanding that radius of curvature should
be large in units of inverse tension (i.e., α′) and the
string coupling should be small.

The usual Wilson loop is built out of gauge fields, but
in supersymmetric gauge theories, a modified gauge-
invariant operator was proposed in Refs. [11, 12] which
also includes the contribution from the (9 − p) adjoint
scalars (Φ) in addition to usual gauge fields A. It is
defined as follows:

W (C) =
1
N

Tr P exp

[ ∮

C
dτ

(
Aμ(x)ẋμ + θ̂i|ẋ|Φi(x)

)]
,

(2)

where θ̂ is a unit vector in R
(9−p) in which the probe

Dp-brane is separated and C is the circle (contour)
which is parametrized by xμ(τ) and P is the path order-
ing. It is normalized such that the large N limit is well-
defined. This observable is invariant under supersym-
metry variation as required. In fact, there is a well-
defined mapping between this Wilson loop operator in
gauge theory and the string partition function Z(C) [11,
12] given by

log〈W (C)〉 ∼ log Z(C) ∼ −S(C). (3)

On the supergravity side, this computation of the Wil-
son loop operator is equivalent to either finding the
minimal surface which describes the string worldsheet
or computing the logarithm of string partition function.
The agreement between circular supersymmetric Wil-
son loops and minimal area in supergravity was one
of the first tests of holographic principle [13, 14]. For
the circular Wilson loops,1 we mention the dependence
obtained using supergravity calculations for p < 3
where generally, log(W ) ∼ t−(3−p)/(5−p). Note that for
N = 4 SYM this is the well-known

√
λ dependence. We

also note that only the p = 0 case has yet been verified
using numerical simulations [9] while other p remains
to be explored on the lattice.

To compute the observable we are interested in, we
note that we need to equate the difference in U0 and
U∞ to the Wilson loop and the mass of W-boson as

1If we choose the contour to be a straight line, then
the Wilson line operator is a BPS object whose expectation
value is precisely equal to unity. However, for a circular loop,
it is not equal to one. This is a little counter-intuitive, since a
straight line and circle can always be related to a conformal
transformation. This shows that the expectation value is not
invariant under conformal transformations.
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done in Ref. [11]. Once we do this, the computation
of log(W), therefore, basically depends on finding U0,
which is computed from the supergravity metric in
terms of Hawking temperature T . It is then straightfor-
ward to work out the expectation value of the Wilson
loop from supergravity and we obtain for p < 3:

ln(W (C)) =
1
2π

(
(7 − p) t(3−p)/2

4π
√

dp

) 2
p−5

, (4)

where t is the dimensionless temperature constructed
using T = 1/β and λ in theories with p < 3 as
t = T/λ1/(3−p). Note that this expression reduces to
the well-known log(W (C)) = 1.89t−3/5 when p = 0.
This is our main result which was not yet computed
for general p. We also note that strictly the canonical
ensemble is not well-defined for p < 3 corresponding
to the divergence in the IR and related to the evap-
oration of the Dp-branes as radiation, however this is
1/N effect and not seen in the strict planar limit. It is
expected that computations done in metastable vacuum
configurations would be close to the actual answer and,
moreover, this cannot be seen at large N and we can
still hope to do a reliable comparison with holography.
This is an extra requirement that lattice computations
use as large matrices as possible to minimize this effect
of IR divergence. In case, it is not possible to numer-
ically study very large N , we have been able to cure
these at finite N by adding a mass regulator which sta-
bilizes the numerical calculations and then taking the
zero mass limit.

3 Lattice computation

The lattice formulations of various maximally super-
symmetric SYM theories in p+1-dimensions (with p ≤
3) start similar to the AdS/CFT conjecture with the
four-dimensional gauge theory. In order to discretize
the N = 4 SYM on the lattice, one performs twist-
ing of field variables to render the theory topological.
This results in p-form supercharges and the zero form
nilpotent supercharge is the one that is exactly pre-
served on the lattice. However, this is only a very small
fraction of the total supercharges in the target con-
tinuum theory. It is hoped that the remaining super-
symmetries will follow as we take the continuum limit
but this issue is subtle at least in four dimensions and
we strongly believe this is not true in practice with a
finite number of counter terms. Moreover, the sign prob-
lem (related to integration over fermionic variables)
which seems under control in lower dimensions at strong
couplings with anti-periodic (thermal) boundary con-
ditions return in a rather severe manner in the four-
dimensional N = 4 SYM. For these issues and many
others, four-dimensional lattice theories have not yet
been able to probe holography directly in a well-defined

manner. However, we can understand the lattice con-
structions and holography beyond this four-dimensional
case and this is where a lot of progress has been recently
made. One of the reasons for this success is that in lower
dimensions, the theory is non-conformal and the pres-
ence of scale helps the lattice computations. Another
reason is that in these lower dimensional cases a greater
fraction of the target supersymmetries is exactly kept
at finite lattice spacing. These substantially reduce the
number of counterterms to be fine-tuned to an extent
that it is conjectured that none remains for p + 1-
dimensional SYM theories with p ≤ 2. Once we do a
classical dimensional reduction (i.e., reduce some spa-
tial direction down to a single site on the lattice) of
this four-dimensional theory, we end up with p + 1-
dimensional SYM for p ≤ 2. These theories have been
successfully studied close to the planar limit at strong
couplings and qualitative agreement with holographic
expectations was observed.

While the computation of the Wilson loop was done
for the p = 0 case, doing this for p ≥ 1 case is difficult
because of the requirement that the lattice discretiza-
tion retains a nilpotent scalar supercharge and targets
the correct continuum limit, it was observed that the
non-orthogonal A�

d lattices are the natural setting for
discretizing those Euclidean d -dimensional maximally
supersymmetric YM theories. Though it is possible to
consider alternate derivation of Wilson loops in those
non-orthogonal geometries, it is complicated. It is com-
plicated because the expressions for Wilson loop has to
be computed in non-hyper cubic lattice geometry since
the lattice is not an orthogonal (skewed). The edges
(or the boundary) can affect the computation similar
to what was explored by authors and collaborators in
Ref. [5]. Therefore, it is only when it is hypercubic
(as discussed in the article) we can compute this in
a straightforward manner. It might be possible to com-
pute the Wilson loop for the deformed geometry and it
will be dressed by some factor γ which determines the
deviation from orthogonal lattice (γ = 0).

However, it is possible for these supersymmetric theo-
ries that one can end up with correct target continuum
theory even on an orthogonal geometry (rather than
skewed torus) if we can expand the fields around the
correct point in the moduli space. For example, it was
argued that if all of the d + 1 links of a A�

d lattice is
expanded alike i.e., U = I (up to some powers of lattice
spacing) we get the skewed geometry. However, if we
rather expand d links around this same vacuum expec-
tation value and the last remaining gauge link around
zero, we obtain the target theory on a hypercubic lat-
tice. This corresponds to expanding the action about
the asymmetric solution of the moduli equations, see
[15] for discussion about this. Though we do not have a
rigorous proof to show why such an expansion alters the
geometry on which target continuum theory is defined,
it is reasonably easy to numerically check that this is
true. This can be implemented in the lattice action by
adding a term that ensures this special expansion basis.
We implemented such a term to carry out some pre-
liminary computations of the critical temperatures and
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found reasonable agreement for the p = 1 case with
the conjectured onset of Gregory–Laflamme instabil-
ity [16]. The location of this transition is determined
by the geometry of the lattice and there is a possi-
bility of checking this for a range of γ interpolating
between γ = −1/d for skewed lattice such as one dis-
cussed in Ref. [5] to the orthogonal lattice as discussed
in this article (γ = 0) and we leave this for future work
since this is rather involved numerical problem with
systematic extrapolations in many parameters and the
requirement of large N limit, different aspect ratios,
and temperatures (couplings). In addition to the opera-
tor discussed here, it will also be interesting to compute
the correlation functions of various operators along the
lines as described in Ref. [17] to better understand the
behavior of non-conformal branes.

4 Summary

We have outlined the procedure to non-perturbatively
check the computation of the gauge-invariant non-
local supersymmetric Wilson loop (also called Malda-
cena–Wilson) on the lattice. We have provided expres-
sions for these observables by computing the corre-
sponding observable in the Type II supergravity. It
would be desirable to have a rigorous numerical check
of this observable on the lattice and hence find agree-
ment with the holographic duality. This would further
extend and become a useful addition to the program of
verifying gauge/gravity duality using lattice computa-
tions of supersymmetric gauge theories across various
dimensions which constitutes a first-principle check of
gauge/gravity duality.
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