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Continuous-variable quantum computation of the O(3) model in 1 + 1 dimensions
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We formulate the O(3) nonlinear sigma model in 1 + 1 dimensions as a limit of a three-component scalar field
theory restricted to the unit sphere in the large squeezing limit. This allows us to describe the model in terms of
the continuous-variable (CV) approach to quantum computing. We construct the ground state and excited states
using the coupled-cluster Ansatz and find excellent agreement with the exact diagonalization results for a small
number of lattice sites. We then present the simulation protocol for the time evolution of the model using CV
gates and obtain numerical results using a photonic quantum simulator. We expect that the methods developed in
this paper will be useful for exploring interesting dynamics for a wide class of sigma models and gauge theories,
as well as for simulating scattering events on quantum hardware in the coming decades.
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I. INTRODUCTION

All fundamental interactions in nature except gravity have
been successfully described within the framework of quantum
field theory. A full understanding of the real-time dynamics
of these interacting field theories is still an open problem. In
lower dimensions, some progress has been made using classi-
cal computations based on matrix product state (MPS) and
projected entangled-pair state tensor network methods [1].
However, for theories close to the critical point these methods
are limited because they can only efficiently represent ground
states of a special class of local Hamiltonians with a gapped
spectrum due to their peculiar entanglement scaling. Another
limitation is that even for systems with a gapped spectrum, the
growth of entanglement during real-time evolution can render
these methods ineffective. The limitations of these classical
methods are expected to be overcome by quantum computers,
which has led to an increased effort aimed at understanding
various lattice models and lattice field theories using quantum
computing algorithms.

From the perspective of fundamental nuclear and parti-
cle physics [2], the long-term goal is the study of real-time
dynamics of quantum chromodynamics (QCD) in four
dimensions, which is relevant for the description of inelastic-
scattering processes at current and future collider experiments
[3]. Due to current hardware limitations, lower-dimensional
models have typically been considered that represent im-
portant stepping stones toward simulations of QCD. In this
regard, the O(3) nonlinear sigma model in 1 + 1 dimensions
is a particularly interesting test ground. This model exhibits
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a global non-Abelian symmetry group and shares several in-
teresting properties with QCD, the most important of which
is asymptotic freedom [4]. The O(3) model has a dynami-
cal mass gap and also admits instanton solutions similar to
four-dimensional QCD [5]. In addition, it is relevant for low-
energy dynamics of pions in nuclear physics as discussed in
more detail below. This makes it a preferred toy model [6] to
explore fundamental questions related to nuclear and particle
physics. Even though this model has been extensively studied
with classical numerical methods, it has recently attracted
increased interest because new classical and quantum com-
puting methods have been developed. This model has been
studied using tensor network techniques based on MPSs with
and without a topological term (for θ = π, 0) [7,8] and using
higher-order tensor renormalization-group methods [9]. Dif-
ferent regularizations for lattice simulations of the O(3) model
have been explored such as the fuzzy sphere qubitization,
D-theory, the angular momentum basis, the Heisenberg comb,
and the Schwinger boson formulation [10–18]. In Ref. [19],
simulations and the preparation of ground states of the O(3)
model were discussed in the context of cold atom quantum
simulators using near-term quantum platforms. In order to
regularize the theory and carry out numerical computations,
recent efforts have mostly focused on the qubit approach to
quantum computing [16,19–21]. Within the qubitization pro-
gram, it has been argued that to reproduce the critical point of
the continuum field theory in this model, only two qubits per
site are required.

In this paper, we present an alternative method, which was
been argued to be more natural than qubit-based quantum
computing [22] in simulating, for example, bosonic models
or lattice field theories such as φ4 scalar field theory [23,24].
This approach is known as continuous-variable (CV) quantum
computing [25], which we employ in this paper for simula-
tions of the O(3) model. Instead of the qubit, the fundamental
unit to carry out computations is the qumode, which can
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be represented by quantum-mechanical harmonic oscillators.
The fundamental idea of the CV approach is to not con-
sider an array of two-level systems such as qubits or d-state
systems such as qudits but to harness the power of the infinite-
dimensional representation in terms of bosonic fields obeying
the infinite-dimensional commutator relations. Qumodes may
even be used as a resource for qubit many-body calcula-
tions (see Ref. [26] for an application to finite-temperature
systems). While continuous-variable quantum computations
can be realized with different hardware platforms, we will
primarily focus on photonic systems [27]. Recent technologi-
cal advances make photonic platforms a promising candidate
for scalable quantum computations. For example, Ref. [28]
reported a quantum computational advantage with a pro-
grammable photonic processor in the context of Gaussian
boson sampling with 216 squeezed qumodes. Additionally,
the realization of a 20-qumode universal quantum photonic
processor where unitary operations can be performed with
high fidelity was described in Ref. [29]. In Ref. [30], photon
number resolution measurements of up to 100 photons have
been developed by sampling from a coherent state with in-
creased robustness against environmental noise.

The outline of the paper is as follows. In Sec. II, we start
by discussing the relevance of the O(3) model for fundamental
nuclear and particle physics. We then review the standard rotor
Hamiltonian, which describes the lattice version of the sigma
model in one spatial dimension, and consider the coupled-
cluster (CC) Ansatz for the ground and first excited states
of the O(3) model. We then present the CV formulation in
Sec. III. In Sec. IV, we present the protocol to measure energy
expectation values and perform time evolution of the model
using the STRAWBERRY FIELDS [31] quantum simulator. We
end the paper with a summary and conclusions in Sec. V. We
provide additional details about the CV gates in the Appendix.

II. NONLINEAR SIGMA MODEL: A TOY MODEL
FOR NUCLEAR PHYSICS

Nonlinear sigma models have been extensively studied
because they share several features with gauge theories but
without added complications related to maintaining gauge
invariance. An important application of these models is in
the low-energy dynamics of pions described by an effec-
tive chiral Lagrangian density given schematically by L =
1
4 Tr[∂μU∂μU †], where U is an isospin SU(2) matrix. Due to
this reason, this is also sometimes referred to as a “principal
chiral field” model [32]. It has a global SU(2)L × SU(2)R
symmetry which coincides with the O(4) symmetry of the
sigma model. This is clearly seen if we parametrize the isospin
matrix as U = n0I + in · σ, where σ = (σ1, σ2, σ3) are Pauli
matrices, and nana ≡ n2

0 + n2 = 1. We can define the angular
momenta as Jab = −i(na

∂
∂nb

− nb
∂

∂na
) with a, b = 0, 1, 2, 3.

The Hamiltonian discretized on a spatial lattice can be
written as

H = 1

2g2

∑
a,b

J2
ab − g2

∑
〈x,x′〉

na(x)na(x′) (1)

where g is a coupling constant. The potential is bilinear in the
vectors na that act as coordinates of the system.

Moreover, a gauge theory with a local SU(2) symmetry
can also be formulated in terms of the parametrized isospin
matrix on the lattice. In this case, the matrices U reside on the
links along which one also defines angular momenta Jab. The
Hamiltonian can be written as

H = 1

2g2

∑
links

J2
ab − g2

2

∑
plaquettes

Tr[U (1)U (2)U (3)U (4)] (2)

where we introduced the Wilson loop over a plaquette in
the second term. It can be expressed in terms of the four-
dimensional vectors na(i) with i = 1, 2, 3, 4. We obtain a
quadrilinear expression for the plaquette term:

1
2 Tr[U (1)U (2)U (3)U (4)]

= na(1)na(2) nb(3)nb(4) − na(1)na(3) nb(2)nb(4)

+ na(1)na(4)nb(2)nb(3) + εabcdna(1)nb(2)nc(3)nd (4).

(3)

The states obey the constraint εabcd JabJcd |�〉 = 0. Addition-
ally, the system obeys Gauss’s law which further constrains
the Hilbert space to the gauge singlet sector [33]. However,
in this paper, we will focus on quantum computations using
continuous variables for a simpler system, the nonlinear O(3)
sigma model, which shares important features with theories
relevant to understanding strong interactions but is easier to
tackle. We leave extensions of the approach taken in this paper
for the continuous-variable formulation of gauge theories for
future works. The nearest-neighbor O(3) sigma model Hamil-
tonian is given by [34]

H = 1

2g2

∑
i

L2
i − g2

∑
〈i, j〉

ni · n j . (4)

Here g2 is the coupling constant, and i and j index nearest-
neighbor sites on a unidirectional lattice. In addition, ni is a
unit three-vector at site i, which takes values on S2, and Li is
the angular momentum operator at each site, La = 1

2εabcJbc.
We use periodic boundary conditions. As is customary, we
write the interaction term in terms of spherical coordinates
noting that the vectors ni have a unit modulus:

ni · n j = sin θi sin θ j cos(φi − φ j ) + cos θi cos θ j . (5)

In fact, one can express the dot product of the vectors in terms
of spherical harmonics Yl,m(θ, φ) as

ni · n j = 4π

3
(Y1,0(θi, φi )Y1,0(θ j, φ j )

− Y1,1(θi, φi )Y1,−1(θ j, φ j )

− Y1,−1(θi, φi )Y1,1(θ j, φ j )). (6)

Each term in (6) has a total magnetic quantum number equal
to zero. We can also write the interaction term in terms of
n± = (nx ± iny)/

√
2 as [34]

ni · n j = n+
i n−

j + n−
i n+

j + nz
i n

z
j . (7)
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Therefore, the lattice Hamiltonian of the (1 + 1)-dimensional
O(3) model can be written as

H = 1

2g2

L−1∑
x=0

L2(x) − g2
L−1∑
x=0

(n+(x)n−(x + 1)

+ n−(x)n+(x + 1) + nz(x)nz(x + 1)), (8)

and the continuum limit is obtained as we take g2 → ∞. The
eigenvalues of the kinetic term are proportional to l (l + 1)
where l = 0, 1, . . . ,∞ denote the energy levels based on the
irreducible representations of the O(3) symmetry. However,
for practical calculations, we impose a cutoff, which we refer
to as lmax. If we identify n± = ∓X±1 and nz = X0, then the
matrix elements of n can be computed using the well-known
expressions involving two j symbols [35]:

〈l1, m1|XM |l2, m2〉 = (−1)m1
√

(2l1 + 1)(2l2 + 1)

×
(

l1 1 l2
0 0 0

)(
l1 1 l2

−m1 M m2

)
.

(9)

This result is obtained from the relation

〈l1, m1|XM |l2, m2〉 =
√

4π

3

∫
d	Y ∗

l,mY1,MYl ′,m′

= (−1)m

√
4π

3

∫
d	Yl,−mY1,MYl ′,m′ ,

(10)

and the Gaunt coefficients∫
d	Yl1,m1Yl2,m2Yl3,m3 =

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

×
(

l1 l2 l3
0 0 0

)(
l1 l2 l2
m1 m2 m2

)
.

(11)

In order to construct a reliable Ansatz for the O(3) model, we
use the CC method which involves a state of the form [36]

|ψ〉 ∝ eαT̂ |ψ0〉 (12)

where T̂ is the cluster operator built from single interaction
terms in the Hamiltonian and α is a tunable parameter. We can
include higher-interaction terms, known as double-excitation
terms in the CC Ansatz, but for our purposes, an operator
bilinear in n suffices. The use of a CC Ansatz for sigma models
is not new and this has already been explored several decades
ago for a class of O(N ) nonlinear sigma models [37–39]. In
addition, unitary CC Ansätze have been used for quantum
computations in different contexts [40,41]. The unitarity or
nonunitarity of the CC Ansatz depends on whether the T̂ is
anti-Hermitian or Hermitian. To build the CC state in our case,
we start with the tensor product of the states |l = 0, m = 0〉

defined at each site:

|	0〉 ≡
L−1⊗
x=0

|l (x) = 0, m(x) = 0〉 , (13)

which is the weak-coupling vacuum state corresponding to the
vanishing cluster operator T̂ = 0. We choose to express T̂ in
terms of the potential term of the Hamiltonian and we obtain
the following coupled-cluster Ansatz:

|�CC〉 ∝
∏

x

e
αg2

L n(x)·n(x+1) |	0〉 , (14)

where α is a variational parameter. As shown in Refs. [42,43],
this Ansatz appears to perform quite well for various coupling
strengths. However, we expect that additional terms, such as
terms bilinear in ni that are not nearest-neighbor terms, as well
as quadrilinear terms, which would correspond to the “doubles
excitations” of coupled-cluster theory, would improve energy
estimates for larger lattices as well as coupling g2. The effec-
tiveness of such additional terms is the subject of ongoing and
future work.

For L = 2 lattice sites, the energy of the CC state can be
computed analytically. It is given by

E0(α)

L
= E0(α)

2
= − 1

4g2
+ 1

2α
+ α − 2g2

2
coth(2g2α).

(15)
For small g2, this expression is minimized for α = 0, and
we obtain the estimate of the ground-state energy E0/2 = 0.
This corresponds to the energy of the state with zero angular
momentum, as expected. Next, we observe that the optimal
value of α goes to 1 for large values of g2. This provides the
following estimate of the ground-state energy:

E0

2
≈ −g2 + 1. (16)

This is an expected result because at large g2, the potential
energy dominates and it is minimized when all unit vectors
n(x) align [since n(x) · n(x + 1) � 1].

A similar approach based on a CC Ansatz which is a
modified version of (14) can be used to estimate excited-state
energies. For the first excited state, we apply the CC Ansatz

|(�CC)1〉 ∝ e
αg2

L

∑
x n(x)·n(x+1)

∑
x

n3(x) |	0〉 . (17)

Since n3 = cos θ , the inclusion of n3(x) replaces Y00(θ, φ)
with Y10(θ, φ) at lattice site x, thus introducing an angular
momentum excitation of l = 1 there. The resulting state
is orthogonal to the CC Ansatz for the ground state
〈�CC|(�CC)1〉 = 0. For illustration purposes, we consider
again only two lattice sites L = 2. The Ansatz in Eq. (17)
yields the following estimate for the energy of the first excited
state:

E1(α)

L
= −g2 + −α + 4g2(1 + 2g2α − α2) + e4g2α (−4g2 + α + 8g4(α + α3))

4g2α(1 + e4g2α (−1 + 4g2α))
. (18)
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FIG. 1. The ground-state energy E0 and mass gap �E = E1 − E0 using ED and CC for lattice sizes L = 2, 3. Angular momentum cutoff
is set at lmax = 3 for ED, with error bars given by difference from the lmax = 2 result. There are 500 000 sample points for MC integration for
L = 3. L = 2 CC is analytic.

For small g2, this is minimized again for α = 0 and we obtain
the following estimate of the first excited state E1

2 = 1
2g2 . This

result corresponds to a single l = 1 excitation, as expected.
In the large g2 limit, the expression in Eq. (18) is minimized
for α = 1, similar to the ground state, and the corresponding
energy is E1

2 = −g2 + 1. This demonstrates that the mass gap
closes asymptotically as g2 → ∞ which is consistent with the
known results.

The ground-state energy obtained using the CC state and
the Hamiltonian (4) is shown in Fig. 1(a). We plot E0(α)/L
as a function of g2 for L = 2 and 3 compared to the results
from exact diagonalization (ED). Using a cutoff lmax = 3, for
small g2, we see excellent agreement between the CC and ED
results up to g2 ≈ 4. We also find that in both methods, the
uncertainty in our results increases with g2. In exact diagonal-
ization, this is because the angular momentum truncation error
increases with g2. It follows that the difference between the
results corresponding to lmax − 1 and lmax, which we take as
our error estimate, increases as well. For the coupled-cluster
method, where the L = 3 results were computed using quasi-
Monte Carlo integration [44], we expect the wave function
to deviate further from a uniform configuration making sam-
pling from a uniform distribution less effective and increasing
uncertainty. The mass gaps �E = E1 − E0 obtained from the
CC and ED methods are shown in Fig. 1(b). Once again, we
observe good agreement as well as a more noticeable increase
in uncertainty as the value of g2 is increased.

It is possible to write the O(3) Hamiltonian given by (8) in
terms of bosonic creation and annihilation operators at each
site using the Schwinger boson formalism [18]. This requires
two qumodes for each lattice site to simulate using a quan-
tum computation based on continuous variables. However,
this approach appears challenging to implement with near- to
intermediate-term resources.

In this paper, we take an alternative point of view and
express the O(3) nonlinear sigma model as a limit of a three-
component scalar field theory in 1 + 1 dimensions requiring
three qumodes at each site. We show that in the appropriate
limit, this is equivalent to the rotor Hamiltonian (4) which is
known to reproduce the sigma model in the continuum. Both
of these continuous-variable approaches to the O(3) model

belong to the same universality class. One advantage of using
the approach presented here is that scalar field theories can be
simulated with established methods using continuous-variable
quantum computation [23,45].

III. SCALAR FIELD THEORY FORMULATION
ON THE TWO-SPHERE

We consider a linear O(3) model consisting of real scalar
fields φa(x) (a = 1, 2, 3) in a single spatial dimension de-
noted by x. We discretize space using L lattice points x =
0, 1, . . . , L − 1, impose periodic boundary conditions, and
choose units such that the lattice spacing and the fundamental
constants c and h̄ are all set to unity. Let πa be the conjugate
momentum to φa obeying the canonical commutation rela-
tions

[φa(x), πb(x′)] = iδabδxx′ . (19)

We introduce the Hamiltonian

H = 1

2g2

∑
x

L2(x) −
∑

x

[
1

2
(φ(x) − φ(x + 1))2 − g2

]
.

(20)
Here the angular momentum operator L denotes the cross
product of the vector field and its conjugate momentum:

L(x) = φ(x) × π(x), (21)

where we used the simplified triplet notation for the fields,
φ = (φ1, φ2, φ3), and similarly for π.

To make contact with the nonlinear O(3) model discussed
in Sec. II, it is useful to define a local basis at each lattice site
consisting of the states defined on a three-dimensional space:

|l, m; �〉 = 1√
N

∫
drr2 d2n e

− �2

8g2 (r2−g2 )2

Ylm(n) |r, n〉 . (22)

Here n is a unit three-vector, r is the radial direction, and � is
a (radial) momentum cutoff scale restricting the wave function
on a sphere of radius r = g. We will model the cutoff in terms
of a squeezing parameter. The state described in (22) can be
separated into radial and angular parts denoted by Ylm. The
radial integrand is not unique and any function that converges
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to a δ function centered at r = g as the cutoff � → ∞ would
work in practice.

In what follows, this choice affects energies only to
O(�−1). The states in (22) form an orthonormal set with norm

N = g2√π

�
+ O(�−3). (23)

The matrix elements of the kinetic energy are given by exact
expressions for finite values of the cutoff � since the radial
part of the wave functions decouples:

1

2g2
〈l, m; �| L2 |l ′, m′; �〉 = l (l + 1)

2g2
δl,l ′δm,m′ . (24)

For the interaction term of the Hamiltonian, we consider two
adjacent sites labeled by i and j. We start with the matrix ele-
ments of a local term contributing to the interaction potential
as

〈l, m; �| φ2 |l ′, m′; �〉 = g2(1 + O(�−2))δl,l ′δm,m′ . (25)

The matrix elements have a simple structure and, after sub-
tracting g2 [see (20)], they vanish in the limit of large values
for the cutoff parameter � → ∞. The matrix elements of the
term involving two sites can be written as

〈li, mi; �| 〈l j, mj ; �| φ(xi ) · φ(x j ) |l ′
i , m′

i; �〉 |l ′
j, m′

j ; �〉
= g2(1 + O(�−2)) 〈li, mi| 〈l j, mj | ni · n j |l ′

i , m′
i〉 |l ′

j, m′
j〉 .

(26)

It has the same structure as the potential term of the O(3)
model discussed in the previous section, which we therefore
recover in the limit � → ∞.

These states can be used as a basis for the matrix elements
of the Hamiltonian (20) from which we can calculate the
energy levels. To achieve a better understanding of the energy
levels, we construct a variational Ansatz [46] by extending the
CC method used for the O(3) model in Sec. II. Analogous
to (13), we start with a reference state |	(�)〉 defined as a
tensor product of the states |l (x) = 0, m(x) = 0; �〉 [Eq. (22)]
defined at each lattice site x:

|	(�)〉 ≡
L−1⊗
x=0

|l (x) = 0, m(x) = 0; �〉 . (27)

This is the weak-coupling vacuum state which corresponds to
the vanishing cluster operator T̂ = 0. We define T̂ in terms of
the potential term in the Hamiltonian and adopt the CC Ansatz

|�CC(�)〉 ∝ e− α
2L

∑
x (φ(x)−φ(x+1))2 |	(�)〉 , (28)

which reduces to the CC Ansatz for the O(3) model (14) in the
limit � → ∞.

A similar approach based on a CC Ansatz which is a
modified version of (28) can be used to estimate excited-state
energies. Notice that

|l = 1, m; �〉 ∝ Y1m(n) |l = 0, m = 0; �〉 (29)

which is a direct consequence of Eq. (22). Concentrating on
m = 0 (the other cases can be treated similarly), we define

|	1(x,�)〉 ∝ φ3(x) |	(�)〉 , (30)

and for the first excited state, we apply the following CC
Ansatz:

|(�CC)1(�)〉 ∝ e− α
2L

∑
x (φ(x)−φ(x+1))2 ∑

x

|	1(x,�)〉 . (31)

This Ansatz reduces to the one for the O(3) model [see
Eq. (17)], in the limit � → ∞. The state |	1(x,�)〉,
given by (30), is the weak-coupling eigenstate with site x
in the state |l (x) = 1, m(x) = 0; �〉, and all others in the
|l (x′) = 0, m(x′) = 0; �〉 state (x′ = x). The degeneracy per-
sists even at finite coupling, and so it should not matter which
value of m we choose at x.

Next, we use the Hamiltonian given in (20) with the local
basis of states given in (22) to compute the ground-state en-
ergy for different values of the cutoff �, once again comparing
exact diagonalization with the coupled-cluster method. The
results are shown in Fig. 2, which displays the ground-state
energy density for L = 2, 3, and lmax = 3 for ED. Here we
consider two values of �, 1 and 10, and display the energies
up to g2 = 4. Figure 3 displays mass gaps for L = 2 and 3.

To obtain the CC energies, we compute expectation val-
ues with numerical integration, with Monte Carlo integration
being used for L = 3 sites. In the latter, we first perform quasi-
Monte Carlo integration [44] to estimate the optimal value of
α. Due to the deterministic nature of this method, we avoid
noise in the minimization process. The energy expectation
is then reevaluated at the obtained value of α by sampling
from a distribution whose radial component approximates the
true radial wave function. For large values of �, a Gaussian
distribution with mean g and width ≈ 1

�
is sufficient [see

Figs. 2 and 3(d)]. For smaller values of �, the radial wave
function cannot be accurately approximated by a Gaussian.
In this case, it is best to use the full radial wave function at
α = 0, which is the radial part of the integrand in Eq. (22)
[see Figs. 2 and 3(b)]. This allows us to obtain an accurate
value of the energy with a lowered uncertainty compared with
the quasi-Monte Carlo method.

In Fig. 4, we investigate the effectiveness of the CC Ansatz
at large g2. To this end, it is necessary to use a significantly
higher value of lmax to provide an ED calculation to compare
against. In this figure, we set lmax = 10 and compute the
ground-state energies and mass gaps for two values of g2 and
three values of �. We not only find agreement between the
two methods as � becomes large, but we also find that the
results of the CC calculation outperform the ED results for
the O(3) model with lmax = 3, as indicated by the light-blue
lines in the two panels on the left-hand side.

For practical numerical simulations with matrices, any-
thing beyond L = 4, lmax = 2 where H is of size 94 × 94

presents a computational challenge. Therefore, to obtain en-
ergy estimates for a larger number of sites, we proceed with
numerical integration methods. In our CC results for L = 2
displayed in Figs. 2 and 3, the angular integrals were per-
formed analytically, and a numerical integration over r(x) was
performed to complete the calculation of expectation values.
For L � 3, however, we need to perform instead a Monte
Carlo integration over all variables.

Numerical results for the energies of the ground and first
excited state are displayed in Fig. 5 (top left panel) as a
function of the number of lattice sites L, with the coupling
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FIG. 2. Ground-state energy E0/L for L = 2, 3 vs g2, computed with ED and the CC method, for � = 1, 10. ED is taken at lmax = 3, with
error bars given by difference from the lmax = 2 result. CC error bars for L = 3 denote statistical uncertainty from Monte Carlo integration.

FIG. 3. Mass gap �E for L = 2, 3 vs g2, computed with ED and the CC method, for � = 1, 10. ED is taken at lmax = 3, with error bars
given by difference from the lmax = 2 result. CC error bars for L = 3 denote statistical uncertainty from Monte Carlo integration.

052412-6



CONTINUOUS-VARIABLE QUANTUM COMPUTATION OF … PHYSICAL REVIEW A 109, 052412 (2024)

FIG. 4. Ground-state energy E0
L and mass gap �E for L = 2 sites, for g2 = 4 (upper panels) and g2 = 10 (lower panels) with lmax = 10.

The displayed results include the O(3) limit as well as three values for �: 1, 3.2, and 10. Error bars for ED results are computed by finding the
deviation from the lmax = 9 results.

FIG. 5. (a) Ground-state and first excited-state energies using the CC Ansatz for the O(3) model, and for the qumode formulation for two
values of �, with g2 = 1 and up to L = 5 sites. We used Monte Carlo integration with 500 000 sample points. (b) Mass gaps �E = E1 − E0

for g2 = 1 as a function of L. (c), (d) Same except that g2 = 4 and 5 000 000 sample points are used for the Monte Carlo integration.
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constant set to g2 = 1. The top right panel shows the mass
gap �E . It appears to converge near �E � 0.48 for a large
number of lattice sites L. We observe the accumulation of
numerical errors as the number of lattice sites is increased.
Analogously, the numerical results for g2 = 4 are shown in the
bottom two panels, with ten times as many sample points for
the Monte Carlo integration. The gap at large L is very small,
as expected. The numerical errors are significantly larger com-
pared to the g2 = 1 case, making it difficult to determine the
gap at more than four sites.

As with the L = 3 results displayed in Figs. 2 and 3, we
approximate the optimal value of the CC parameter α with
quasi-Monte Carlo integration, and then reevaluate the energy
expectation at that optimal value by sampling from a Gaussian
distribution for the radial direction.

IV. QUANTUM SIMULATION USING
CONTINUOUS VARIABLES

In this section, we discuss the simulation of the O(3) model
using CV gates. We start with the construction of the CC
Ansatz, which we then use for the quantum computation of
energy levels. Next, we describe the relevant circuits for the
time evolution within the CV approach and we present nu-
merical results, which use the STRAWBERRY FIELDS quantum
simulator. More detailed discussions about CV gates can be
found in the Appendix.

A. Coupled-cluster Ansatz

To engineer the CC Ansatz in (28), let us first concentrate
on a single lattice site. By making use of three qumodes
of quadratures (qa, pa) (a = 1, 2, 3), collectively denoted as
(q, p), we initialize the system in the vacuum state:

|0〉 ≡
3⊗

a=1

|0〉a = 1

π3/4

∫
d3q e− 1

2 q2 |q〉 . (32)

We attach an ancilla qumode of quadratures (qb, pb), also
initialized in the vacuum state:

|0〉b = 1

π1/4

∫
dqb e− 1

2 q2
b |qb〉b . (33)

We apply the product of two-mode entangling non-Gaussian
unitaries

Uab = e−i �√
2g

q2
a pb, (34)

followed by the application of a translation operator on the
ancilla qumode:

Ub = eig �√
2 (1+ 2

�2 ) pb . (35)

These operators shift the quadrature qb of the ancilla qumode.
Altogether, we thus obtain

Ub

3∏
a=1

Uab |0〉 |0〉b

= 1

π

∫
d3q dqb e− 1

2 q2
e− 1

2 [qb− �√
2g (q2−(1+ 2

�2 )g2 )]2 |q〉 |qb〉b .

(36)

FIG. 6. CV quantum circuit for the generation of the state
|ω(�)〉 = |l = 0, m = 0, �〉 [Eq. (37)] relevant for the construction
of the coupled-cluster Ansatz.

Next, we measure the ancilla qumode projecting it onto the
state |0〉b. The resulting state, which we denote by |ω(�)〉,
only involves the three main qumodes. It is given by

|ω(�)〉 ∝ b〈0|Ub

3∏
a=1

Uab |0〉 |0〉b ∝
∫

d3q e
− �2

8g2 (q2−g2 )2 |q〉 .

(37)
Evidently, we constructed the state |ω(�)〉 =
|l = 0, m = 0,�〉 [Eq. (22)] which contributes to the state
|	(�)〉 [Eq. (27)] used in the coupled-cluster Ansatz. The
associated circuit in terms of CV gates is shown in Fig. 6.
The non-Gaussian unitaries Uab in (34) can be expressed in
terms of cubic phase gates acting on the ancilla qumode.
Using the relation

6q2
a pb = (qa + pb)3 − (qa − pb)3 − 2p3

b, (38)

we obtain the following gate decomposition of Uab:

Uab = F †
b (UBS)baVa

(
−�

g

)
Vb

(
�

g

)
(UBS)abVb

(
�√
2g

)
Fb,

(39)
where F is the Fourier-transform operator [see (A11)],
(UBS)ab implements a 50 : 50 beam splitter [θ = π

4 in the
definition (A17)], and we introduced the cubic phase gate

V (s) = ei s
3 q3

. (40)

The quantum circuit for this unitary is shown in Fig. 7.
Reference [47] demonstrates that the cubic phase gate can
be constructed from Kerr operations instead of having to use
a measurement-based method. It was shown that the cubic
gate parameter is s = 3√

2
χταλ3, where α is a displacement

parameter and λ corresponds to a squeeze parameter r = ln λ.
χ characterizes the Kerr nonlinearity and τ the Kerr gate
time. The parameter α was adjusted to reduce algorithmic
error and becomes α ∼ λ3 in the noiseless case. In Fig. 8,
we estimate achievable values of the cutoff � as a function
of squeezing using this method, in the absence of losses.
The squeezing is calculated by first considering the required
amount to implement the CV gate with gate parameter s = 0.3
at approximately 99 and 99.9%, respectively, the approximate
values of which are displayed in Ref. [47]. We then added

FIG. 7. CV quantum circuit [see Eq. (39)] implementing the non-
Gaussian unitary operator Uab given in (34). The circuit element BS
corresponds to the unitary UBS.
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FIG. 8. Achievable values of � in constructing the state |ω(�)〉 as a function of coupling g and squeezing in dB. Panels (a) and
(b) correspond to 99 and 99.9% cubic gate fidelity. Estimates are based on computed fidelities for gate parameter s = 0.3 from Ref. [47],
with the Kerr strength and gate time held to the values used for s = 0.3. Displayed is the ideal (noiseless) case.

the additional number of decibels of squeezing to increase the
gate parameter to s = �

g .
Next, we consider two lattice sites each occupied by

qumode triplets of quadratures (qa, pa) and (qa′ , pa′ ), respec-
tively, with a, a′ = 1, 2, 3. As before, we collectively denote
them by (q, p) and (q′, p′). Analogous to the procedure dis-
cussed above, we start by engineering the state

|ω(�)〉a ⊗ |ω(�)〉a′ = |l = 0, m = 0; �〉a

⊗ |l ′ = 0, m′ = 0; �〉a′ , (41)

which is given in terms of a direct tensor product of the states
constructed for each lattice site [see (37)]. We proceed by
attaching a triplet of ancilla qumodes of quadratures (qc, pc)
initialized in the vacuum state, and apply the Gaussian unitary
[a product of three CX gates (A20)]

Wac = e−i
√

2α
L q·pc (42)

followed by the analogous unitary W †
a′c. These two operators

shift the quadratures of the ancilla qumodes. We obtain the
state

W †
a′cWac |ω(�)〉a ⊗ |ω(�)〉a′

=
∫

d3q d3q′ d3qc e− 1
2 q2

c e
− �2

8g2 (q2−g2 )2

e
− �2

8g2 (q′2−g2 )2

× |q〉 |q′〉 |qc +
√

2α

L
(q − q′)〉 . (43)

After measuring the ancilla qumodes and projecting them onto
the vacuum state |0〉c, we obtain the state

e− α
2L (q−q′ )2 |ω(�)〉a ⊗ |ω(�)〉a′ . (44)

After identifying φ(x) = q, φ(x + 1) = q′, we have thus en-
gineered the desired state |�CC(�)〉 for two lattice sites [see
(28)]. The circuit to construct this state is shown in Fig. 9.
This can be generalized to an arbitrary number of lattice sites
by repeating the above procedure for each pair of adjacent
sites (x, x + 1) of the one-dimensional lattice.

As our scheme is not fully unitary and requires ancilla
measurements, it is important to analyze the success rate of

our algorithm. Clearly, the assignment of separate ancillae to
each spatial site suggests that the success rate decreases with
lattice size. Notice that the circuits of Figs. 6 and 9 both re-
quire ancilla measurements on each site. Figure 6 corresponds
to the generation of resource states for the calculation. Since
they are site local, this generation can be done in parallel and
offline (for g = 1 and � = 3.2 the success rate to generate
|ω(�)〉 is ≈0.4, so that it would only take approximately two
to three runs to obtain the state, with the number of runs
increasing with g and �). Therefore, we compute the success
rate of Fig. 9 assuming that we have access to the resource
states |ω(�)〉. These rates are shown in Fig. 10. Fitting to an
exponential in the lattice size L, the rate of decay appears to
be g2 − 1.

Given the exponential decrease in the success probabili-
ties with lattice size, it may be worth identifying a unitary
coupled-cluster Ansatz through which we would not need to
perform so many photon number measurements for large L.
This is a subject for future work.

Next, we consider the construction of the first excited state
[see (31) above]. The construction of this state is a direct
extension of the procedure for the ground state given in (28),
which we have already engineered. After obtaining the state
|	(�)〉 as a tensor product of the states |ω(�)〉 [Eq. (37)]
at each lattice site, we add an ancilla of quadratures (qc, pc)
prepared in the vacuum state |0〉c. We then apply the following
string of Gaussian unitaries (CX gates),

∏
x

e−iγφ3(x)⊗pc , γ � 1, (45)

FIG. 9. CV quantum circuit for constructing the CC state for two
lattice sites in (44). Each line represents three qumodes.
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FIG. 10. Success probability of obtaining the CC state (at the optimal value of α) as a function of lattice size L, given an ensemble of
resource states |ω(�)〉 (prepared using Fig. 6). The points are fitted to an exponential function of L.

and measure the added ancilla in the photon number basis
projecting it onto the single-photon state. It is important that
γ be chosen to be sufficiently small to avoid introducing an
unwanted dependence of the resulting wave function on φ3(x).
We obtain the following uniform superposition of states:

c 〈1|
∏

x

e−iγφ3(x)⊗pc |	(�)〉 |0〉c ∝
∑

x

φ3(x) |	(�)〉 , (46)

on which the CC Ansatz for the first-excited state (31) is based.
The quantum circuit for L = 2 lattice sites is shown in Fig. 11.
After obtaining the state in (46), we still need to apply the
circuit shown in Fig. 9 to realize the full CC Ansatz analogous
to the ground state described above.

B. Quantum computation of energy levels

Having constructed the CC Ansatz, we now introduce the
procedure to obtain the ground-state energy of the Hamil-
tonian given in (20) using quantum resources. We compute
energies using the variational quantum eigensolver algorithm
[46,48], which has seen use for simulation in various contexts
[41,49–51]. In our case, the parametrized CC Ansatz becomes
the input for the energy functional 〈�CC(α)| H |�CC(α)〉,
where H is the Hamiltonian (20). The energy functional is
computed on a quantum computer by first choosing a com-
putational basis, writing H as a sum of terms each of which
can be diagonalized by a unitary U in that basis, and then
applying U to the variational Ansatz to obtain a set of modified
circuits for quantum computation. We will discuss these mod-
ifications in a CV quantum computing context below (where
the computational basis is the photon number basis). Each
circuit is then measured (sampled) in the chosen basis and the
resulting contribution to the total functional 〈H〉 is given by
the sample mean of these measurements. The output of the
functional is minimized by optimizing over our parameters,
just α in our case, using a classical optimizer. In our numerical

FIG. 11. CV quantum circuit relevant for constructing the CC
Ansatz for the first excited state [see (31)], with L = 2 lattice sites.

simulations, we utilize Nelder-Mead optimization [52], which
is a gradient-free technique.

The first term in the expectation value 〈H〉 we consider
is that of the interaction term 1

2

∑
x[φ(x) − φ(x + 1)]2. After

engineering the CC Ansatz [see (28)], we fix x and create the
state

|�(x, �)〉 ≡
∏

a

Px,a(�)(UBS)a
x,x+1 |�CC〉 (47)

by acting on the CC Ansatz first with a series of 50 : 50 beam
splitters with neighboring lattice sites as input ports followed
by quadratic phase gates Px,a(�) = ei�φ2

a (x)/2, where � is a real
parameter [see Eq. (A12)]. Note that the quadratic phase gate
can be decomposed in terms of a single rotation and single-
mode squeezer gate. We then compute

1

�2

∑
x

∑
a

[〈�(x, �)| Nx,a |�(x, �)〉 + 〈�(x,−�)|

× Nx,a |�(x,−�)〉 − 2 〈�(x, 0)| Nx,a |�(x, 0)〉], (48)

where Nx,a is the number operator for the qumode labeled by
x, a, which can be written as Nx,a = 1

2 [π2
a (x) + φ2

a (x)] with
a = 1, 2, 3. To see why this gives us the expectation value of
the interaction term of the Hamiltonian in (20), note that for a
single qumode of quadratures (q, p), we have

P†(�)NP(�) = 1
2 (q2 + (p + �q)2), (49)

where N = 1
2 (p2 + q2) and P(�) is the quadratic phase gate

as introduced above. We deduce the following parameter shift
rule:

1

�2
[P†(�)NP(�) + P†(−�)NP(−�) − 2N] = q2. (50)

This yields the expression involving expectation values given
in (48) by taking q = φa(x), and noting that applying the 50 :
50 beam splitters results in

φa(x) → 1√
2

(φa(x) − φa(x + 1)). (51)

Therefore, we obtain the desired expression for each one of
the interaction terms in the Hamiltonian (20). A quantum cir-
cuit for the above calculation is shown in Fig. 12 for qumodes
φa(x) and φa(x + 1).

For practical purposes, when computing expectation val-
ues, it is advantageous to add an ancilla qumode of
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FIG. 12. Quantum circuit for the calculation of the expectation
value of the interaction term in the Hamiltonian (20) involving φa(x)
and φa(x + 1).

quadratures (qc, pc) prepared in the vacuum state and to use
a CX gate instead of a P gate. That is, we make the replace-
ment ei�φ2

a (x)/2 → e−i�pc⊗φa(x). This reduces numerical errors
at small values of �. It is necessary for � to be small not only
to lower truncation errors on a classical simulator, but also
to keep additional squeezing minimal. Instead of a parameter
shift rule, we need to choose only one value of � and compute

2

�2
〈�(�)|N |�(�)〉. (52)

This gives the desired result due to the relation

CX(−�)NcCX(�) = Nc + �qcφa(x) + �2

2
φ2

a (x), (53)

where the expectation values of Nc and qc vanish for the
vacuum state, which the ancilla is prepared in. The only re-
maining term is the one we need, thereby preventing errors
derived from unphysical terms. However, with only one an-
cilla this method requires us to compute 〈(�φa(x))2〉 for each
value of x and a.

Next, we are going to consider the kinetic-energy term in
the Hamiltonian (20), which is given by

1

2g2

∑
x

L2(x) = 1

2g2

∑
x

(φ(x) × π(x))2. (54)

To obtain its expectation value, we start by fixing x and a = 3,
and consider 〈L2

3 (x)〉. The contributions of the other compo-
nents can be treated similarly. We compute the expectation
value of the square of the number operator for the a = 1, 2
qumodes at lattice site x as

�N12(x) ≡ (N2(x) − N1(x))2, (55)

with respect to the state

|�〉 ≡ (UBS)12
x Fx,1 |�CC〉 . (56)

Here F is again the Fourier-transform operator F = ei π
4 (p2+q2 )

and UBS is a 50 : 50 beam splitter. After some algebra, we
obtain the following relation:

L2
3 (x) = F †

x,1(UBS)12
x �N12(x)(UBS)12

x Fx,1, (57)

hence

〈�CC| L2
3 (x) |�CC〉 = 〈�| �N12(x) |�〉 . (58)

The expectation values of L2
1,2(x) can be obtained by cyclic

permutation of the indices. Next, we present numerical results
using the quantum simulator STRAWBERRY FIELDS [31] for two
values of the coupling, g2 = 1 and 4. For these simulations,
we need to impose a Fock space cutoff, which we denote by
nmax. The results for the ground state using the CC Ansatz
are shown in Fig. 13. These were found by computing the
energy expectation near the optimal value of α obtained from
numerical integration. For the coupling term, we employed
an ancilla and CX gates instead of P gates [see Eqs. (52)
and (53) above]. The displayed error bars were obtained by
computing the energy along each Cartesian direction. Since
the CC ground state is invariant under global rotations, each
result (multiplied by 3) should be valid, and any variation
reflects truncation errors. Even at nmax = 14, which requires
a Hilbert-space dimension of 147 (3L physical qumodes plus
an ancilla summing to 7), we see that there is very significant
truncation error for � = 3.2. Therefore, we conclude that
it requires an immense amount of computational resources
to simulate a CC state with a sufficiently large value of
� to estimate the O(3) energy. The results at higher nmax seem
to be improved somewhat if we compute 〈L2〉 using Eq. (58)
but by breaking up the expectation value as

〈�CC| L2
3 (x) |�CC〉 = 2

( 〈�| N2
1 (x) |�〉 + 〈�| N2

2 (x) |�〉 )
− 〈�CC| (N1 + N2)2 |�CC〉 (59)

(see Fig. 14 ). Here the last term is an expectation in the state
|�CC〉 rather than |�〉 [Eq. (56)], to be compared with Fig. 13
which uses |�〉 for all terms:

〈�CC| L2
3 (x) |�CC〉 = 〈�| N2

1 (x) |�〉 + 〈�| N2
2 (x) |�〉

− 2 〈�| N1N2 |�〉 . (60)

FIG. 13. STRAWBERRY FIELDS simulation results for the calculation of the ground-state energy using the CC Ansatz near the minimizing
value of α for (a) g2 = 1 and (b) g2 = 4 and L = 2. The black points were obtained with numerical integration over the radial coordinates, and
the dashed line obtained using Eq. (15).

052412-11



JHA, RINGER, SIOPSIS, AND THOMPSON PHYSICAL REVIEW A 109, 052412 (2024)

FIG. 14. STRAWBERRY FIELDS simulation results for the calculation of ground-state coupled-cluster energies near the minimizing value of
α for (a) g2 = 1 and (b) g2 = 4 and L = 2. Here we use (59) to compute the kinetic energy. The black points were obtained with numerical
integration over the radial coordinates, and the dashed line was obtained using Eq. (15).

In any case, we note that the truncation error is in the num-
ber basis, unlike our ED results which were truncated in the
spherical harmonic basis.

C. Time evolution circuits and photonic
quantum simulator results

In this section, we perform the time evolution for the
Hamiltonian given in (20) in terms of small time steps �t . In
order to promote the interaction term of the Hamiltonian (20)
to a time-evolution operator, we apply the string of unitaries

UI ≡
∏

x

∏
a

Ua(x), (61)

where Ua(x) is obtained by applying 50 : 50 beam splitters
and a quadratic phase gate:

Ua(x) ≡ e−i �t
2 (φa(x)−φa (x+1))2

= (UBS)a
x+1,xPx,a(−2�t )(UBS)a

x,x+1. (62)

A quantum circuit implementing this Trotter step is shown
in Fig. 15 for qumodes φa(x) and φa(x + 1). The time evo-
lution of the kinetic term can be implemented with the aid of
non-Gaussian Kerr gates, K (s) = eisN2

, and cross-Kerr gates,
UCK(s) = eisN1N2 . For a given lattice site x, each Trotter step
will contain the following string of unitaries:

U31(x)U23(x)U12(x). (63)

Using Eq. (57), we can write the unitaries as

Uab(x) = F †
x,a(UBS)ba

x (UCK)ab
x

(�t

g2

)
Kx,a

(
− �t

2g2

)
Kx,b

×
(
− �t

2g2

)
(UBS)ab

x Fx,a. (64)

FIG. 15. Quantum circuit for a Trotter step of the interaction
term [Eq. (62)] in the Hamiltonian (20) for qumodes φa(x) and
φa(x + 1).

A quantum circuit implementing the Trotter step for the
kinetic energy (63) is shown in Fig. 16 for the three qumodes
at a given lattice site x.

Consider the state |l, m; �〉 given by Eq. (22). Its wave
function factorizes into radial and angular parts:

〈r, n|l, m; �〉 = ψ�(r)Ylm(n), ψ�(r)

= 1√
N

e−�2(r2−g2 )2/8g2
, (65)

where the normalization constant is given in (23) for large
values of the cutoff �. The radial wave function is centered
at r = g with a spread �r ∼ O(1/�). The matrix elements of
the evolution operator in the basis of (22) can be written as

〈l, m; �| e−itH |l ′, m′; �〉 =
∫ ∏

x

dr(x)r2(x) |ψ�(r(x))|2

× 〈lm| e−itH |l ′m′〉 . (66)

Here |l, m; �〉 = ⊗
x |l (x), m(x); �〉, and similarly for the

other states. The Hamiltonian H is a function of the radial
coordinates through its interaction term which is quadratic
in the fields. Therefore, the radial spread in the exponent of
the evolution operator is t · O(r�r) ∼ O(gt/�), where we
used r ∼ g and �r ∼ 1/�. It follows that, given t , we need
to choose � so that t � �/g. To show this numerically, we
computed the probability corresponding to the transition am-
plitudes in (66) for g2 = 1 and several values of �. The results
are shown in Fig. 17.

In this figure, we computed this probability for l = l ′ =
m = m′ = 0, and L = 2. As in (66), this calculation was per-
formed by expressing the time evolution operator as a matrix
in the basis of spherical harmonics, and as a function of the
continuous parameter r. Monte Carlo integration was then
performed over the r coordinate to complete the computation
of the amplitude. We find that greater values of � are required
for large times t as well as for values of t for which the
probability of returning to the original state is large.

In Fig. 18, we show results for the time evolution using the
STRAWBERRY FIELDS quantum simulator. Instead of comput-
ing the amplitude in the basis |l, m; �〉, we constructed and
evolved the state |0, 0; �〉 but computed the overlap with the
photon number vacuum state:

〈r|0〉 ∝ e−r2/2 |	0〉 (67)

052412-12



CONTINUOUS-VARIABLE QUANTUM COMPUTATION OF … PHYSICAL REVIEW A 109, 052412 (2024)

FIG. 16. Quantum circuit for a Trotter step of the kinetic-energy term (63) of the Hamiltonian (20) for the three qumodes φa(x).

where |	0〉 is defined in Eq. (13) and r is the vector of radial
coordinates over all sites. Even with just two Trotter steps
for each time measurement (colored markers) and a small
truncation in the photon number basis, the results in Fig. 18
display good agreement with results obtained using matrices
and Monte Carlo integration, the latter of which contains no
Trotter error.

V. CONCLUSION

We studied the O(3) nonlinear sigma model in 1 + 1
dimensions using continuous-variable quantum computing.
Instead of using discrete variables (qubits), continuous vari-
ables (qumodes) allow for an infinite-dimensional Hilbert
space, which is well suited for models involving bosonic
degrees of freedom. To achieve this, instead of following
the Schwinger boson approach based on two qumodes per
site [18,53], we considered a collection of scalar fields with
three physical qumodes for each lattice site. We considered
wave functions that are peaked on the two-dimensional sphere
with a radial spread defined by a momentum cutoff �. In
the limit � → ∞, we showed that our results agree with
the lattice rotor Hamiltonian for the nonlinear O(3) sigma
model. We carried out the quantum simulation by calculating
matrix elements of the Hamiltonian in a truncated Hilbert
space and then obtained energy levels by diagonalizing the
resulting matrix. We compared these results to an approach
based on a coupled-cluster Ansatz for the ground and excited
states and found that the latter accurately yielded the ground-

FIG. 17. The probability of obtaining the original state |	(�)〉
(return probability) as a function of time t for L = 2, lmax = 3, g2 =
1. The blue points correspond to � = 3.2, 4.5, 6.3, 10, 14, 20 that
converge to the O(3) result shown by the horizontal dashed line in
the large � limit.

and excited-state energies. Using this Ansatz, we outlined the
quantum algorithm to compute energy levels and perform time
evolution of the system using continuous variables. To show
that our outlined procedure works in practice, we prepared
the ground-state Ansatz and performed time evolution calcu-
lations using the photonic simulator STRAWBERRY FIELDS with
an appropriate truncation of the Fock space.

Aside from the O(3) model being interesting in its own
right, an improved understanding of the nonlinear sigma
model represents a step toward addressing some of the most
challenging open questions in fundamental nuclear and par-
ticle physics. This includes real-time dynamics relevant to
inelastic-scattering processes in collider experiments, hadron
structure, QCD hadronization, and the dynamics of nuclear
matter under extreme conditions. The O(3) model shares sim-
ilarities with four-dimensional QCD including the presence of
instanton solutions, asymptotic freedom, and the presence of
a dynamically generated mass gap. One of the critical next
steps will be to promote the global symmetry discussed in this
paper to local gauge symmetries using the continuous-variable
approach to quantum computing, which we will address in
future work. We expect that our paper will facilitate further
exploration of models with increasing complexity eventually
leading to an improved understanding of QCD.

FIG. 18. Probability of obtaining the vacuum state |0〉, after
evolving the state |	(�)〉 for time t with L = 2, g2 = 1, � = 3.2.
The black points are obtained in the same way as in Fig. 17 (matrices
in spherical harmonic basis with truncation lmax = 3, Monte Carlo
integration over the radial direction). The points without error bars
indicate results obtained with the quantum simulator STRAWBERRY

FIELDS with two Trotter steps for each time measurement, for differ-
ent Fock space cutoffs nmax. We also show the result for nmax = 8 and
12 with ten Trotter steps, for t = 1.
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APPENDIX: CONTINUOUS-VARIABLE GATES

In this Appendix, we review some of the CV gates used
in this paper. Additional details and gates can be found in
Ref. [31].

1. Single qumode gates

To create a squeezed state on the sphere, one must first
apply a squeeze operation and then a displacement in position.
Squeezing is implemented by

S(r) = e
r
2 (a†2 −a2 ), (A1)

where a and a† are bosonic creation and annihilation operators
with [a, a†] = 1. The position and conjugate momentum are
written as

q = 1√
2

(a† + a), p = i√
2

(a† − a). (A2)

Recall that in this paper the components of the field φi(x) at L
sites give 3L independent position operators, all of which are
accompanied by their conjugate momentum πi(x). It follows
from (A1) and (A2) that

S†(r)qS(r) = e−rq, S†(r)pS(r) = er p. (A3)

Note that we have

r = ln �, (A4)

where � is the cutoff parameter restricting the wave functions
to the sphere. A displacement in position can be achieved
using a displacement gate, which depends on a real-valued
parameter x ∈ R as

e−ipx = D(x/
√

2) = e
x√
2 (a†−a). (A5)

Its action is given by

q → q + x, p → p. (A6)

This action gives us a way to compute the expectation value
of q as

q = 1

2x
(eipxNe−ipx − e−ipxNeipx ), N = 1

2
(q2 + p2). (A7)

Thus to compute 〈ψ | q |ψ〉, we compute the mean photon
number in the two states

e−ipx |ψ〉 , eipx |ψ〉 (A8)

and take the difference.
Next, the rotation gate is defined by

R(θ ) = eiNθ , θ ∈ R. (A9)

It rotates the position and momentum as(
q
p

)
→

(
cos θ − sin θ

sin θ cos θ

)(
q
p

)
. (A10)

Another useful gate we have used in the main text is the
Fourier transform F . This gate is the continuous-variable ver-
sion of the Hadamard gate. It is a special case of the rotation
gate:

F = R
(π

2

)
= e

iπ
4 (p2+q2 ). (A11)

We make use of it in creating the state |	(�)〉 [see Eq. (27)],
and to help implement the angular momentum operator L.

A particularly useful single-qumode gate is the quadratic
phase gate,

P(s) = eisq2/2, (A12)

which has the transformation properties

P†(s)qP(s) = q, P†(s)pP(s) = p + sq. (A13)

From this, we find

P†(s)NP(s) = P†(s) 1
2 (q2 + p2)P(s) = 1

2 [q2 + (p + sq)2],
(A14)

and thus

q2 = 1

s2
(P†(s)NP(s) + P†(−s)NP(−s) − 2P†(0)NP(0)).

(A15)
This means that we can compute the expectation value
〈ψ | q2 |ψ〉 by instead computing

〈ψ | P†(s)NP(s) |ψ〉 , (A16)

for three values of s. These are found simply by measuring
the mean photon number in the state P(s) |ψ〉. Note that it is
possible to express the P gate in terms of the more elementary
rotation and single-mode squeeze gates [31].

2. Two qumode gates

The fundamental two qumode gate that is typically consid-
ered is the beam-splitter gate given by

(UBS)ab(θ ) = eθ (ab†−a†b) = (UBS)†
ba(θ ), θ ∈ R. (A17)

We use it in conjunction with F to implement the angular
momentum operator L. Its action is given by(

a
b

)
→

(
cos θ − sin θ

sin θ cos θ

)(
a
b

)
. (A18)
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We note that in our qumode formulation, if a and b belong to
two of the components of a triplet q, then the beam splitter
corresponds to an O(3) rotation in the ab plane:

(UBS)ab(θ ) = e−iθJab . (A19)

Another important gate is the CX gate, which is given by

CXab(s) = e−isqa pb . (A20)

It can be decomposed in terms of beam splitters and single-
mode squeezers. Its action is

qa → qa, pa → pa − spb,

pb → pb, qb → qb + sqa. (A21)

Among other use cases, it enables us to engineer certain ex-
ponential wave functions with the aid of an ancilla. Let the
quadratures (qb, pb) represent a physical qumode and (qa, pa)
an ancilla. Then

CXba(s) |ψ〉b ⊗ |0〉a =
∫

dqb〈qb|ψ〉 |qb〉b ⊗ e−iapaqb |0〉a

=
∫

dqb〈qb|ψ〉 |q〉b ⊗ |sqb〉a . (A22)

The state |sqb〉a is a coherent state, and so

〈N = 0|sqb〉a = e−s2q2
b/2. (A23)

Thus, measuring qa to be in the N = 0 state gives the (un-
normalized) state

a 〈N = 0| CXba(s) |ψ〉b ⊗ |0〉a = e−s2q2
b/2 |ψ〉b . (A24)

This recipe allows us to apply the coupled-cluster operator to
the state |	(�)〉. In this case, we couple two physical modes
to an ancilla at a time:

qb pa → (φb(x) − φb(x + 1))pa, b = 1, 2, 3. (A25)

A similar procedure is used to construct |	(�)〉 itself. In this
case, we make use of a similar operation called the CZ gate,
defined by

CZab(s) = eisqaqb . (A26)

The CZ gate is related to the CX gate via the Fourier-transform
operator (A11) as CZab = F †

b CXabFb. However, additional
elements are required since the operation is non-Gaussian.
We refer the reader to Ref. [31] for information on additional
gates, such as the cubic phase and Kerr gates, both of which
implement non-Gaussian operations.
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