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We study the Sachdev-Ye-Kitaev (SYK) model—an important toy model for quantum gravity on IBM’s
superconducting qubit quantum computers. By using a graph-coloring algorithm to minimize the number
of commuting clusters of terms in the qubitized Hamiltonian, we find the gate complexity of the time
evolution using the first-order product formula for N Majorana fermions is OðN5J2t2=ϵÞ where J is the
dimensionful coupling parameter, t is the evolution time, and ϵ is the desired precision. With this improved
resource requirement, we perform the time evolution for N ¼ 6, 8 with maximum two-qubit circuit depth
and gate count of 343. We perform different error mitigation schemes on the noisy hardware results and
find good agreement with the exact diagonalization results on classical computers and noiseless simulators.
In particular, we compute vacuum return probability after time t and out-of-time order correlators which is a
standard observable of quantifying the chaotic nature of quantum systems.
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I. INTRODUCTION

The holographic duality [1] relates a special class of
quantum field theories in d dimensions and quantum gravity
indþ 1 dimensions. This strong/weak duality enables one to
study the properties of strongly coupled field theory using
classical supergravity and vice versa. However, there are no
cases where both sides of the duality can be studied
analytically at the same time. Several attempts have been
made on the lattice using Monte Carlo [2,3] to study these
theories but they have their limitations. Therefore, it is often
of interest to find simpler models that have holographic
properties and can be studied in the strong coupling limit.
One such model is the Sachdev-Ye-Kitaev (SYK) model
[4–7] consisting of N Majorana fermions in 0þ 1 dimen-
sions with random couplings between q fermions at a time
chosen from a Gaussian distribution with zero mean and
variance proportional to J2=Nq−1.
An interesting feature of the SYK model is that it

develops an approximate conformal symmetry in the large
N, low-temperature limit i.e., N ≫ βJ ≫ 1 (β is the inverse
temperature), where it is related to near extremal black
holes that develop the nAdS2 (near AdS2) geometry. It was
shown to saturate the chaos bound [8], a feature that is
associated with holographic behavior. Since this is a 0þ 1-
dimensional model, it is computationally tractable and has
been studied up to 60 Majorana fermions [9,10].

As a toy model for quantum gravity, it is, therefore,
crucial to study the real-time dynamics of this model
beyond methods accessible by classical computing. This
direction has already been explored starting with Ref. [11].
In another work [12], the authors studied a generalized
SYK model using a four-qubit nuclear magnetic resonance
quantum simulator and computed bosonic correlation
functions.
We put forth an improved circuit complexity1 and study

the SYK model on noisy superconducting quantum com-
puters for the first time to our knowledge. Specifically, we
find an improved complexity from earlier proposals of
OðN10J2t2=ϵÞ [11] and OðN8J2t2=ϵÞ [13] to OðN5J2t2=ϵÞ
for the Lie-Trotter-based algorithm [14]. Using this
improvement, we study the time evolution up to eight
Trotter steps on quantum hardware available through IBM
and compute the return probability and four-point out-of-
time-ordered correlators.

II. SYK HAMILTONIAN

The Hamiltonian for the SYK model with N Majorana
fermions and q-fermion interaction terms is

H ¼ ðiÞq=2
q!

XN
i;j;k;…;q¼1

Jijk���qχiχjχk � � � χq; ð1Þ
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1The complexity is defined as the least number of two-qubit
gates in the circuit that implements the time evolution of the
Hamiltonian H.
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where χ are the Majorana fermions satisfying fχi; χjg ¼
χiχj þ χjχi ¼ δij. We consider q ¼ 4 with random all-to-
all quartic interactions averaged over disorder. The random
(real) couplings Jijkl are sampled from a Gaussian distri-
bution with the mean Jijkl ¼ 0 and variance equal to

J2ijkl ¼ 3!J2

N3 . We set J ¼ 1 in this work. The dimension of

the Hilbert space is dimðHÞ ¼ 2N=2 where n ¼ N=2 is the
number of qubits.2 The model can also be considered for
q > 4 and is solvable in the large q limit [7].

A. Qubitization and Trotterization

To perform the time evolution, we first have to map the
fermionic Hamiltonian to qubits. We will use the standard
Jordan-Wigner transformation. The N fermions in (1) can
be written in terms of tensor product of N=2 Pauli matrices
X, Y, Z and the identity matrix 1 [11,12] as

χ2k−1 ¼
1ffiffiffi
2

p
�Yk−1

j¼1

Zj

�
Xk1⊗ðN−2kÞ=2;

χ2k ¼
1ffiffiffi
2

p
�Yk−1

j¼1

Zj

�
Yk1⊗ðN−2kÞ=2; ð2Þ

where the square root is to ensure the normalization
following Ref. [5]. In order to simulate the dynamics on
quantum hardware, we first decompose the Hamiltonian
into Pauli strings as H ¼ P

m
j¼1Hj and then use the

standard Lie-Trotter formula [15]:

e−iHt ¼
�Ym

j¼1

e−iHjt=r

�
r
þO

�X
j<k

k½Hj;Hk�k
t2

r

�
; ð3Þ

where we denote the spectral norm by k · k. If the terms in
the decomposition of H are near to commuting, then the
Trotter error is reduced and vanishes if they commute.
Though the number of terms into which H is split is
m ¼ ðN

4
Þ, one can reduce it by only summing over a small

number of clusters of Pauli strings N ≪ m. This helps in
reducing the Trotter error since the number of terms
summed in (3) is reduced. We find that for N ¼ 6, the
reduction factor i.e., m=N ¼ 3 while for N ¼ 8, m=N ¼
35=3 and this enables us to reliably evolve to larger times

by controlling the Trotter error (see Supplemental Material
[16] for details). If we impose total error in simulating the
time evolution is ϵ, then we need r ¼ Oðt2=ϵÞ Trotter steps
assuming the spectral norm of commutators to be upper
bounded by unity. Using these arguments, Ref. [11] esti-
mated the circuit complexity of OðN10t2=ϵÞ. The method
based on Lie-Trotter expansion is not the only way of
simulating Hamiltonians. Another way is to use a con-
trolled version of oracles to embed the Hamiltonian in an
invariant SUð2Þ subspace [17] and a variant of this was
used in Ref. [18] to bring complexity to OðN7=2tþ
N5=2tpolylogðN=ϵÞÞ. However, this is not amenable to
current hardware implementation.
Let us consider the simplest case of N ¼ 4 where we

have just one Pauli string with H ¼ −J1234ZZ. The time
evolution circuit [19] is given by Fig. 1. The two-qubit cost
of simulating various N can be found in Table I for N ≤ 20.
The circuit complexity estimate based on commuting Pauli
strings exploiting the graph-coloring algorithm grows3 like
OðN5Þ, a substantial improvement over OðN10Þ proposed
in Ref. [11].
The number of Pauli strings in the decomposition of H

grows likeOðN4=4!Þ for largeN, and the cost to simulate the
simplest nontrivial Pauli string is OðNÞ. Hence, the ∼N5

circuit complexity is close to optimal for this approach to
Hamiltonian simulation. The complexity can be improved by
using Bravyi-Kitaev mapping; however, such optimizations
are not required for the smallN which are currently hardware
accessible. We provide details of gate resource estimation in
the Supplemental Material (SM) [16].

III. RETURN PROBABILITY

One of the main motivations for using quantum com-
puters is to understand the time evolution of quantum

FIG. 1. Circuit implementing single Trotter step for N ¼ 4.

TABLE I. The gate cost (assuming all-to-all connectivity) for
the time evolution of the SYK Hamiltonian per Trotter step,
number of Pauli strings, and the number of clusters N of
commuting Pauli strings for different N.

N Pauli strings Clusters Two-qubit gates

4 1 1 2
6 15 5 30
8 70 6 110
10 210 23 498
12 495 57 1504
14 1001 92 3560
16 1820 116 6812
18 3060 175 11962
20 4845 246 19984

2We have N ¼ 2n since two Majorana fermions can be
represented by one complex spinless fermion which can be
represented by a single qubit.

3For N ≤ 10, the cost based on quantum Shannon decom-
position (QSD) is lower [20]. However, large N scaling is
exponential.
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systems. An observable we compute is the return proba-
bility by evolving an initial state4 given by jψ0i ¼ j0i⊗n for
Nt Trotter steps and computing the overlap as

P0 ¼ jhψ0je−iHtjψ0ij2: ð4Þ
The return probability is closely related to the spectral form
factor [22] and shows similar behavior of slope, dip, ramp,
and plateau upon disorder average [21,23] which are
features of the SYK model.
The error-mitigated hardware results of the return

probabilities for five realizations of the model with
N ¼ 6 and disorder average are shown in Fig. 2. The
dashed black lines are the exact time evolution, while the
dashed blue curve is the ensemble average of the exact
evolution over the five realizations. At this stage, we do not
compare to the state-of-the-art results obtained for the SYK
model with classical computing methods since it is still far
from the current best classical result with N ∼ 60.
As N increases, the resource requirements quickly

increase as shown in Table I. Therefore, for N ¼ 8 we
consider the time evolution of just one instance of the
model in Fig. 3. The markers are results obtained from
127-qubit IBM machines ibm_cusco, ibm_nazca, and
ibm_kyoto with various degrees of error mitigation
applied.

All these devices use the eagle r3 processor, where the
native two-qubit gate is not the standard controlled X (CX)
but the echoed cross-resonance (ECR) gate (see SM [16]
for the definition of the gate). The leading source of gate
noise in current devices is the two-qubit gates. To deal with
this, the error mitigation strategy we employ is a combi-
nation of Pauli twirling/randomized compiling [25] for the
ECR gates and self-mitigation [26]. For the discussion on
the implementation of these error-mitigation techniques
and to get an estimate on the computation overhead to
materialize in the quantum processing units of IBM, we
refer the readers to the SM [16]. We also use the standard

(a) (b) (c)

(d) (e) (f)

FIG. 2. The return probability for five realizations (a)–(e) of the SYK model with N ¼ 6. The disordered average (f) shows the slope
region and the starting of the ramp behavior. The total two-qubit circuit depth is the same as the number of ECR gates, given the
topology of the qubits.

FIG. 3. The return probability for a single instance of the SYK
model with N ¼ 8. The results before mitigation [24] are slightly
above the threshold of the fully depolarized channel (gray dashed
line). For t ¼ 1, 2 we use dt ¼ 1 while for t ¼ 4 we use dt ¼ 2.
The maximum 2-qubit gate depth we use is 343.

4The initial state chosen here belongs to the set of common
eigenstates of the SYK spin operators defined in [21] and forms a
complete basis.
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M3 protocol [27] for qubit measurement errors and dynami-
cal decoupling [28–31] to suppress decoherence noise. The
results for the return probability5 with different types of
error mitigation applied and exact evolution are shown in
Figs. 2(a)–2(e) for five different instances of the SYK
Hamiltonian withN ¼ 6 and the disorder average over these
realizations is shown in Fig. 2(f).
For N ¼ 6, the self-mitigated return probability agrees

with exact results even for large evolution time and ECR
gates in the circuit. To simulate the SYK model with N ¼ 6
up to t ¼ 12 (eight Trotter steps), we require about 300
ECR gates. For N ¼ 8, we need circuit depth of 343 ECR
gates for two Trotter steps (t ¼ 2 with dt ¼ 1, t ¼ 4 with
dt ¼ 2) and 170 (for t ¼ 1 with dt ¼ 1). The return
probability for N ¼ 8 is shown in Fig. 3 for one realization
of the model. Going beyond t ¼ 4 appears to be past
current hardware capability even with advanced error
mitigation methods.

IV. OTOC COMPUTATION

An important feature of the SYK model is that for large
N and in the low-temperature limit, it is maximally chaotic

and is a quintessential example of a fast scrambler.
A defining feature of such systems is that quantum
information shared between a small number of elementary
degrees of freedom is rapidly distributed into exponentially
many degrees of freedom. This is known as “scrambling”
and black holes are known to be the fastest scramblers in
nature. To quantify the chaos, one considers the out-of-time
ordered (OTO) commutator between two operators W and
V given by [32–35]

CðtÞ ¼ −h½WðtÞ; Vð0Þ�†½WðtÞ; Vð0Þ�i; ð5Þ
In general CðtÞ starts from zero and becomes significant at
some later time t, which one refers to as scrambling time.
By considering the commutator expansion, we can define
the out-of-time order correlators (OTOC)6:

OTOC ≔ FðtÞ ¼ hWðtÞVð0ÞWðtÞVð0Þiβ; ð6Þ

whereW and V are generic Hermitian operators and do not
have the same symmetry as the Hamiltonian. The growth of
the CðtÞ is related to the decay of the OTOCs i.e., FðtÞ
through the simple relation, CðtÞ ¼ 2ð1 − FðtÞÞ. The time

(a) (b)

(c) (d)

FIG. 4. The OTOC for three realizations (a)–(c) of the SYKmodel with N ¼ 6 obtained on ibm_kyoto and ibm_cusco, (d) shows
disorder average over (a)–(c).

5We only show even Trotter steps because for self-mitigation,
one requires forward and backward Trotter evolution by an equal
amount.

6These were first introduced in the study of disordered
superconductors [36]. OTOC is also closely related to the thermal
average of signals from Loschmidt echo [37].
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evolution of the operator W in the Heisenberg representa-
tion is WðtÞ ¼ eiHtWð0Þe−iHt and h·iβ ¼ Trfρ·g denotes
the thermal average at inverse temperature β. A common
choice for ρ is to just use the T → ∞ limit given by the
normalized identity matrix, 1= dimðHÞ [38]. For theW and
V we can either take Pauli matrices or Majorana fermions
such that W ¼ χi and V ¼ χj with i ≠ j and average over
the different pairs ði; jÞ. We used the simplest case of a
single Pauli matrix, i.e., W ¼ V ¼ Z. We denote 1 − FðtÞ
by 1 − FðtÞij ¼ OijðtÞ where i and j denote the qubit
location of the single-qubit operator W and V respectively
and compute this on the hardware. The choice of these
operators does not change the basic features of exponential
growth and saturation. The SYK model saturates the chaos
bound [8] at low temperatures and they have been exten-
sively studied using classical computing methods [39,40].
The current resources do not allow us to access very large
values of N, but we take a first step at computing in the
simplest setting on the quantum computer.

A. Results for OTOC

Even though the OTOC seems simple to compute, the
experimental/quantum computer measurement of the
OTOC is very challenging because of the unusual time
ordering. In a preliminary investigation, Ref. [41] studied
OTOC of local operators on a nuclear magnetic resonance
quantum simulator followed soon on trapped-ion [42]. In
order to compute OTOC on quantum hardware, we need to
define a protocol for the measurement. Several proposals
have been put forth [43–46] and we use the protocol
proposed in Ref. [45] which computes OTOC only by
considering forward time evolution and exploiting the
correlations between randomized measurements [47]. We
discuss the details of the global protocol based on ran-
domized measurements in the SM [16].
The results for OTOC from ibm_cusco and ibm_-

kyoto for three instances of N ¼ 6 and the disorder
average over them is shown in Fig. 4. For this computation,
we used the M3 readout error mitigation protocol and
dynamical decoupling. Even without self-mitigation, we
find good agreement with the exact results.

V. SUMMARY AND DISCUSSION

We have proposed circuit complexity of OðN5t2=ϵÞ for
Hamiltonian simulation of the SYK model with N
Majorana fermions, a substantial improvement over
existing results and performed quantum simulations on
noisy 127-qubit quantum computers. We studied the return
probability for N ¼ 6, 8 Majorana fermions and computed
the out-of-time order correlators for N ¼ 6, a diagnostic of
the chaotic behavior of quantum many-body systems. Due
to the noisy devices currently available, we applied
advanced mitigation methods to the hardware result and
showed that it agrees well with the exact time evolution.

It might appear that the superconducting platform is not
the best method to study the quantum simulation of this
model as we could have applied the ion-based approaches
to quantum simulation. The advantage of superconducting
platforms is the low gate times, but the limitation is the
qubit connectivity. With ion-based platforms, this is the
opposite—there is more freedom with connectivity, but
the gate times are much longer. For the dense SYK model
and other dense random Hamiltonians, both of these things
are important. In this work, we take a step toward
identifying which of these is more important by pushing
the superconducting platform to push the limits with
limited connectivity. We hope to extend this work with
hardware admitting all-to-all connectivity.
Though we cannot study the strict holographic limit and

see signs of saturation of chaos bound on current devices,
we believe that our work will be useful in future explora-
tions of this model. In this regard, it might also be useful to
consider simplified models similar to SYK [13,48–50] that
are conjectured to have the same holographic behavior as
the pure SYK model considered here. Another direction is
to consider q > 4 and explore the resource requirements
and time evolution. It would be useful to study the
dynamics of the model over different timescales for the
return probability at finite β. These interesting problems
would require resources that are beyond the contemporary
hardware era. We leave these questions for future work.
The use of quantum computers for models such as the SYK
model in coming decades will not only provide new
insights into the holographic principle but also into the
interesting world of strange metals and quantum many-
body systems [51].

The N ¼ 6, 8 SYK Hamiltonian realizations, the Pauli
decomposition, and the time evolution circuit as OPEN

QASM 2.0 files for the single Trotter step can be obtained
from Ref. [52].
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