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We use the higher-order tensor renormalization group method to study the two-dimensional generalized
XY model that admits integer and half-integer vortices. This model is the deformation of the classical XY
model and has a rich phase structure consisting of nematic, ferromagnetic, and disordered phases and three
transition lines belonging to the Berezinskii-Kosterlitz-Thouless and Ising class. We explore the model for
a wide range of temperatures, T, and the deformation parameter, Δ, and compute specific heat along with
integer and half-integer magnetic susceptibility, finding both Berezinskii-Kosterlitz-Thouless-like and
Ising-like transitions and the region where they meet.
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I. INTRODUCTION

Spin models in two Euclidean dimensions with discrete
or continuous global symmetries can have a wide range of
interesting properties. Due to the famous no-go theorem
known as the Hohenberg-Mermin-Wagner-Coleman
(HMWC) theorem, in two-dimensional models, a continu-
ous symmetry cannot break spontaneously, and thus, a
phase transition from a disordered to an ordered phase is
not allowed. The simplest model in two dimensions with
continuous symmetry is the classical XY model, also
known as the O(2) model. In this model, the spins take
values on the circle S1. This model has been the subject of
several investigations over the past fifty years [1–5] due to
its simplicity and remarkable properties. Surprisingly, it
admits an infinite-order phase transition, which is topo-
logical, known as the Berezinskii-Kosterlitz-Thouless
(BKT) phase transition. This transition is peculiar since
it does not follow the usual classification of the phase
transitions due to Ehrenfest, which describes the order of
the phase transition in terms of the lowest discontinuous
derivative of the partition function. This transition does not
violate the HMWC theorem since the transition is not due
to breaking of any symmetry but due to the unbinding of

vortices and antivortices (topological defects) at some finite
temperature. Across the phase transition in the XY model,
all the derivatives of the free energy remain continuous.
The transition is associated with the dissociation of the
integer vortex pairs at the critical temperature. Due to the
wide-ranging applications of this model, in explaining
various phenomena related to superfluid helium, thin films,
superconductivity, liquid crystals, and melting of two-
dimensional crystals, several extensions of this model have
been considered.
One such extension we study here was first proposed by

Korshunov, Lee, and Grinstein (KLG) in Refs. [6,7]. This
model has several interesting features, some of which
include the possibility of fractional vortices and signs of
passing directly from the disordered (high temperature)
phase to the single particle (quasi) condensate phase via an
Ising transition, a situation reminiscent of the “deconfined
criticality” scenario as studied in Ref. [8]. Due to the
competition between the different terms in the Hamiltonian,
this also leads to a richer phase structure. This model also
provides a good example to understand the interplay
between the discrete Z2 symmetry and Uð1Þ symmetry.
The modification of the XY model, as proposed by KLG, is
given by the Hamiltonian:

H ¼ −J
X
hjki

cosðθj − θkÞ − J1
X
hjki

cosðqðθj − θkÞÞ; ð1Þ

where we use the standard notation hjki to denote the
nearest neighbor and θj ∈ ½0; 2πÞ with J; J1 > 0. We can
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consider these couplings to depend on a parameter Δ such
that J ¼ Δ and J1 ¼ 1−Δwith 0 ≤ Δ ≤ 1. The limitΔ ¼ 0
corresponds to a pure spin-nematic model, while Δ ¼ 1 is
the usual XY model. The presence of the nematic term
cosðqθj − qθkÞ gives rise to fractional excitations such as
half-integer vortices (for q ¼ 2), and these exhibit invari-
ance under θ → θ þ ð2π=qÞ. In this work, we will only
consider the case q ¼ 2. The model defined by (1) is known
as the generalized XY (gXY) model, and the phase diagram
of this model has been subject to a lot of investigations. The
basic conclusion is that there are three phases denoted by
BKT, half-BKT, and Ising-like transitions [7,9–12], and
they connect [13] around a special point in the T − Δ phase
space. We show the expected phase structure in Fig. 1. In
this work, we perform numerical computations to precisely
sketch this diagram, using the numerical tensor network
method, finding evidence that the Ising transition line might
preempt the BKT transition for a finite range of Δ.
When Δ ¼ 0, there is a topological transition corre-

sponding to the dissociation (unbinding) of half-integer
vortex and antivortex, while for Δ ¼ 1, there is a disso-
ciation of integer vortex pairs. Both these transitions
happen around the same temperature [9]. Though the
qualitative behavior of the phase diagram of gXY model
is known, a determination of the multicritical point or how
the transition lines connect is mostly known due to
Monte Carlo numerical work. The goal of this work is
to study the phase diagram by exploring several Δ values
for the case of q ¼ 2 and provide an alternate method using
real-space tensor renormalization group techniques by

approximating the partition function corresponding to
the gXY Hamiltonian. There has also been a lot of work
for q > 2 finding interesting additional phases. We refer the
reader to Ref. [14] to start the reference trail.
The study of phase transitions and symmetry breaking for

the case of statistical models with short-range interactions in
two dimensions is special due to the famous HMWC
theorem, which states that continuous symmetry cannot
break spontaneously. An equivalent statement is that there
are no Goldstone bosons that accompany the symmetry
breaking in two Euclidean dimensions. Due to this, the XY
model is interesting in itself, but adding the additional term
makes the model even more interesting. The richness of this
model can be understood as follows: there are three primary
phase regions—a disordered region, a region with integer
vortices (IV), and a region with half-integer vortices (HIV).
The integer-vortex pair phase is also referred to as the
“ferromagnetic,” whereas the “nematic” represents the half-
integer vortex pair phase. The transition line, corresponding
to a continuous phase transition, also referred to as the
“Ising-line,” can be captured by the logarithmic divergence
of the specific heat close to the critical temperature, while it
is known that such a method is not very useful for BKT-like
transitions. To locate the transition between the integer-
vortex pair phase to the disordered phase (where the vortices
dissociate), we compute the magnetization for a small
symmetry-breaking external field and then take the vanish-
ing field limit to extract the critical temperature. We cannot
compute the spontaneous magnetization in the thermody-
namic limit without an external field since, due to the
HMWC theorem, it is zero. This method of determining the
infinite-order transition was pursued in Ref. [15]. For the IV
to HIV, the transition can simply be tracked by locating the
divergence in specific heat since it is of Ising type.
To carry out a precise study of the phase transitions in this

model, we apply the tensor network methods based on the
higher-order tensor renormalization group (HOTRG) as
introduced in [16]. Some preliminary investigation of this
model was carried out in [17]. This model has been studied
using the variational uniform matrix product state
algorithm [18] in Ref. [19]. Here, we use an alternative
approach using the numerical real-space tensor renormal-
ization group methods. Since the proposal by Levin and
Nave [20], the scheme of performing real-space coarse-
graining using tensors has seen a lot of progress with
extension to higher dimensions and innovative procedures
to carry out the tensor renormalization [21–23].We refer the
interested reader to Ref. [24] for a summary of tensor
networks based on both real-space renormalization group
methods and approximation of the ground state of slightly
entangled many-body systems. The tensor renormalization
group (TRG) approach has been successfully applied to the
two-dimensional XY model and related models [15,25–29]
and also to the three-dimensional XY model with finite
chemical potential [30]. Using the dual variable approach

FIG. 1. The conjectured phase diagram of the gXY model. The
BKT line (blue) separates the ferromagnetic and the disordered
phases, and the half-BKT line (green) separates the nematic and
disordered phases, whereas the Ising line (red) separates the
nematic and ferromagnetic phases. The blob represents the region
where the transition lines meet.
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(from the character expansion), several gauge theories have
also been studied [31–33] with tensors and have found
agreement with results obtained using other numerical
methods. In addition, recently some progress was also
made to extract the critical behavior by studying the
renormalization group collapse of magnetization for the
three-dimensionalOð4Þ model [34]. It seems likely that one
can compute critical exponents accurately using TRG
methods in coming years providing an alternative to the
existing methods such as Monte Carlo and conformal boot-
strap. Themajor part of these computations is the contraction
of the network during coarse graining and the singular value
decomposition of the growing size of tensors to restrict to
fixed size after each step. This amounts to truncating the
singular values to some thresholdDwhich is known as bond
dimension. To improve the performance of the numerical
computations in this work and get toD ¼ 91 in a reasonable
amount of computational time, we use the graphical process-
ing unit-accelerated code described in Ref. [35].

II. TENSOR FORMULATION

The starting point of the real-space tensor renormalization
approach (on square lattice) is to decompose the Boltzmann
weight in terms of a tensor with 2d indices where d is the
number of dimensions (Euclidean). This can either be done
exactly or approximately based on the symmetries of the
action.One of the standardmethods to do this decomposition
is to use the character expansion [36], but different truncation
schemes also exist [37]. Using this initial tensor one can
create a network of these tensors such that when the network
is contracted, it provides a good approximation to the
partition function Z.
The partition function of the classical spin model with

external field h is

Z ¼
Y
j

Z
dθj
2π

Y
hjki

eβ½Δ cosðθj−θkÞþð1−ΔÞ cosð2ðθj−θkÞÞ�

×
Y
j

eβ½h cosðθjÞ�; ð2Þ

where hjki denotes neighboring lattice sites and β is the
inverse temperature. We expand the argument of the
exponential (Euclidean action) using Jacobi-Anger expan-
sion and obtain

Z ¼
Y
j

Z
dθj
2π

Y
l∈L

X
nl

anlðβ;ΔÞeinlðθj−θkÞ

×
X
pl

Ipl
ðβhÞeiplθj ; ð3Þ

where

anðβ;ΔÞ ¼
X∞

m¼−∞
In−2mðβΔÞImðβð1 − ΔÞÞ; ð4Þ

and In is the modified Bessel function of the first kind. On
integrating over the θj variables, we obtain the partition
function:

Z ≈ tTr

�Y
s

Tn1;n2;n3;n4ðsÞ
�
; ð5Þ

where

Tn1;n2;n3;n4ðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY4
k¼1

ankðβ;ΔÞ
vuut × In1þn2−n3−n4ðβhÞ: ð6Þ

This tensor represents the four-legged object at site swhere
n1, n2, n3, and n4 denote the top, right, bottom, and left legs,
respectively. In the case of zero field, i.e., h ¼ 0, we have the
conservation ofUð1Þ charges due to the δ function in (6). To
write the initial tensor for numerical computations, we have
to choose a suitable range of values form so that the infinite
sum in (4) can be truncated to a finite interval.We have fixed
this to be integral values, m∈ ½−50; 50�. The second
truncation we have to do is over the indices in (6), which
also runs from −∞ to ∞. For this truncation, we choose
nk ∈ ½−40; 40�; nk ∈Z, i.e., D ¼ 91. Using these truncation
procedures, we use the initial tensor to perform a fixed
number of coarse-graining steps, N ¼ 30 for most cases,
using the higher-order singular value decomposition of the
tensors (HOTRG algorithm) as described in [15,25] to
obtain the partition function in the thermodynamic limit.
We refer the reader to Appendix A for additional details
about the tensor formulation of the generalized XY model
and the impure tensor for magnetization.

III. NUMERICAL RESULTS

We now discuss the results for the generalized XYmodel
using tensor network methods. The main quantity of
interest in the real-space tensor computation is the partition
function, which has to be approximated accurately. Using
this, we compute two main observables—the specific heat
and the magnetic susceptibility normalized by the lattice
volume V. They are defined as

Cv ¼
β2

V
∂
2 lnZ
∂β2

; ð7Þ

and

χ ¼ 1

V
∂M
∂h

¼ 1

βV
∂
2 lnZ
∂h2

; ð8Þ

where M is the magnetization, which is defined using the
free energy, F ¼ −T lnðZÞ ¼ −β−1 lnðZÞ as

M ¼ −
∂F
∂h

¼ 1

β

∂ lnZ
∂h

: ð9Þ
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The computation of magnetization from the first derivative
of free energy (or partition function) is often prone to
numerical errors. A better method is to compute the impure
tensor corresponding to the magnetization and insert it into
the network for the partition function [15]. To compute the
dominant magnetization, depending on Δ, we use either h
or h1 corresponding to the different symmetry-breaking
terms in the partition function. We use external magnetic
field h for Δ > 0.36 to compute M and magnetic field h1
forΔ ≤ 0.36 related to cos ð2θÞ, a term which we refer to as
M1. We refer the reader to Appendix A for further details
about the tensor construction.
Since this model has Ising and BKT-like transitions, the

specific heat cannot always conclusively determine the
phase transition. For such cases, we look at the first
derivative of the magnetization computed using a simple
finite difference method and compute the susceptibility.
The peak in susceptibility signals a transition, which we
then extrapolate to the zero-field limit. The extraction of
this zero-field critical temperature is obtained by doing
functional fits of the form discussed in Ref. [15]. We show
the magnetic susceptibility plot and zero-field limit extrac-
tion of the critical temperature for Δ ¼ 0.32 in Figs. 2
and 3, respectively, where h̄1 is the central value used for
the finite difference of the susceptibility measurement. We
refer the reader to Appendix C for plots corresponding to a
wide range of Δ values and to Appendix D for plots
corresponding to systematic error analysis when m or D is
varied. For the computation of magnetization, we use a
lattice volume of 235 × 235 while for h ¼ h1 ¼ 0, we use a
volume of 230 × 230. For all computations, we use D ¼ 91
and a range of m as defined in (4) to be ½−50; 50�.
As discussed before, the gXY model reduces to the XY

model when Δ ¼ 1, and much work has been done using
Monte Carlo and tensor methods for the computation of the
critical temperature and critical exponents. The critical
temperature on a square lattice was computed to be Tc ¼
0.89290ð5Þ using tensor network methods in [15], while
the critical exponent δ ≈ 15 was computed within errors in
Ref. [35]. In this work, we start with Δ ¼ 0.8, which is

expected to have a single BKT-like transition, and move to
smaller Δ values passing through the region where the
transition lines meet and going all the way down to the limit
of Δ → 0. For the BKT transition, it is well known that the
peak of specific heat is not the correct way to determine the
transition temperature (it is an overestimate, as is clear from
the data in Table I). From our computation, we find that for
Δ ¼ 0.8, the peak of Cv is observed at T ¼ 0.95ð1Þ. This
was reported to be around T ≈ 0.91 in Ref. [19]. To
accurately determine the transition, we compute magnetic
susceptibility for a small external field h and then took
the zero-field limit as explained above. For Δ ¼ 0.8, we
obtain T ∼ 0.890ð4Þ.
As we decrease Δ approaching the multicritical point (or

the region where the phases meet), the difference between
the transition temperatures deduced from the peak of
specific heat and magnetic susceptibility, respectively,
decreases for the BKT transition. As we cross the region
where transition lines meet and move to smaller values of
Δ, we again see that the difference increases for the half-
BKT line. This is evident from the data given in Table I

FIG. 2. The magnetic susceptibility defined in (8) against T for
Δ ¼ 0.32.

FIG. 3. The critical temperature, Tc for different h̄1 and
Δ ¼ 0.32. a ¼ 0.685ð3Þ; b ¼ 0.48ð1Þ; c ¼ 0.29ð5Þ.

FIG. 4. The critical temperatures for a range of deformation
parameter Δ obtained using TRG. The red triangles represent the
continuous Ising transition, while the green circles and blue
squares represent the transition of the BKT class.
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in Appendix B. Such behavior has also been noted
previously in Ref. [10] where for the half-BKT line,
the critical temperature values almost agree with each other
around Δ ¼ 0.35. We find that the specific heat peak
fails to capture the correct transition temperature for
Δ ≥ 0.50.
From the results of our tensor network computations,

we find the phase diagram for this model as shown in
Fig. 4. The critical temperatures for the half-BKT and
BKT lines are extracted from the zero-field limit method,
as stated before, and the critical temperatures for the Ising
line are inferred using the peak in the specific heat. We
collect the numerical results in Table I for critical temper-
ature values deduced from the peak of the specific heat as
well as magnetic susceptibility corresponding to the
standard and nematic magnetization. In Appendix C,
Figs. 7–16 show the magnetic susceptibility vs temper-
ature plots as well as critical temperature scaling with
finite external magnetic field for a variety of Δ values. In
Appendix D, Table II we show the variation of free energy
and magnetization M1 as one varies m parameter at fixed
Δ ¼ 0.34 near the critical temperature and Figs. 17–19
show the free energy scaling with increasing bond-
dimension near the transition point different deformation
parameter values.

IV. CONCLUSIONS

We studied the phase diagram of the generalized XY
model in two dimensions using the graphical processing
unit-improved real-space tensor network methods. We
located the phase transitions belonging to the Ising and
the BKT universality classes and determined the region in
the phase diagram where they appear to connect, i.e.,
Δ ¼ 0.36ð2Þ, Tc ¼ 0.716ð3Þ. Our result is consistent with
an interpretation where the half-BKT and Ising transition
lines first meet (as Δ is increased from zero), and then the
Ising line continues for a small range of Δ to merge with
the BKT line, as observed in Ref. [12] for q ¼ 2 and for
the q ¼ 3 Potts model in Ref. [38]. This work refines the
previous computation of this model using matrix product
states methods, and we find results that are qualitatively
similar to the existing results in the literature from the
standard Monte Carlo method. It remains an open
problem to apply and extend the methods used in this
work to models involving fractional vortices, correspond-
ing to terms like cosðpθi−pθjÞ with p ≥ 3 in the
Hamiltonian. It is believed that these models have a more
complicated phase diagram, as studied in Ref. [14] using
Monte Carlo methods. It would be interesting to study and
revisit this model with the tensor network methods in the
future.

The code and data used in this paper can be obtained
from Ref. [39].

ACKNOWLEDGMENTS

A. S. is supported by U.S. Department of Energy Grant
No. DE-SC0019139. R. G. J. is supported by the U.S.
Department of Energy, Office of Science, National
Quantum Information Science Research Centers, Co-design
Center for Quantum Advantage (C2QA) under Contract
No. DE-SC0012704 and by the U.S. Department of Energy,
Office of Science, Office of Nuclear Physics under Contract
No. DE-AC05-06OR23177. The work of A. J. was sup-
ported in part by the Start-up Research Grant from the
University of the Witwatersrand. The numerical computa-
tions were done on PARAM SMRITI, Mohali, India,
supported by the Ministry of Electronics and Information
Technology and Department of Science and Technology
(DST), Government of India, and Syracuse University HTC
Campus Grid supported by NSF Award No. ACI-1341006.
We thank Minati Biswal for collaboration during the initial
stages of this work.

APPENDIX A: DERIVATION OF TENSORS
FOR THE GENERALIZED O(2) MODEL

We start with the following Hamiltonian:

H ¼ −Δ
X
hjki

cos ðθj − θkÞ − ð1 − ΔÞ
X
hjki

cos ð2ðθj − θkÞÞ

− h
X
j

cosðθjÞ − h1
X
j

cos ð2θjÞ; ðA1Þ

which represents the generalized XY model with the
symmetry-breaking fields corresponding to the integer
and half-integer terms. The partition function then reads as

Z ¼
Z �Y

j

dθj
2π

��
eβΔ

P
hjki cos ðθj−θkÞþβh

P
j
cosðθjÞ

× eβð1−ΔÞ
P

hjki cos ð2ðθj−θkÞÞþβh1
P

j
cos ð2θjÞ

�
: ðA2Þ

Using the expansion in terms of the dual variables

eβΔ cos ðθj−θkÞ ¼
X∞
a¼−∞

IaðβΔÞeiaðθj−θkÞ; ðA3Þ

where Ia is the modified Bessel function of the first kind
with integral order a. If we write a summation for each term
in the Hamiltonian and then collect all the terms corre-
sponding to θj, we can write the partition function as a
tensor network contraction of four-ranked tensors living on
each lattice site. Such a tensor at lattice site s is given by
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Ts
abcd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m;n;o;p

IaðβΔÞIbðβΔÞIcðβΔÞIdðβΔÞ
s

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Imðβð1 − ΔÞÞInðβð1 − ΔÞÞIoðβð1 − ΔÞÞIpðβð1 − ΔÞÞ

q

×
X
r

Irðβh1Þ
X
l

IlðβhÞ
Z

dθs
2π

× eiθsðða−bþc−dÞþ2ðm−nþo−pÞþlþ2rÞ: ðA4Þ

To evaluate this integral, we can relabel the indices as follows:

a → a − 2m; b → b − 2n; c → c − 2o; d → d − 2p: ðA5Þ
Such a relabeling does not affect the integral since the indices of the Bessel functions run from −∞ toþ∞. The tensor Ts

abcd
becomes

Ts
abcd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m;n;o;p

Ia−2mðβΔÞIb−2nðβΔÞIc−2oðβΔÞId−2pðβΔÞ
s

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Imðβð1 − ΔÞÞInðβð1 − ΔÞÞIoðβð1 − ΔÞÞ

p

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ipðβð1 − ΔÞÞ

q X
l

IlðβhÞ
X
r

Irðβh1Þ
Z

dθs
2π

eiθsðða−bþc−dÞþlþ2rÞ: ðA6Þ

The integral is the familiar Fourier transform of the delta function; hence contracting all the other terms with this delta
function, we get the final form of the four-ranked site tensor as

Ts
abcd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m;n;o;p

Ia−2mðβΔÞIb−2nðβΔÞIc−2oðβΔÞId−2pðβΔÞ
s

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Imðβð1 − ΔÞÞInðβð1 − ΔÞÞIoðβð1 − ΔÞÞ

p

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ipðβð1 − ΔÞÞ

q X
r

Ia−bþc−dþ2rðβhÞIrðβh1Þ: ðA7Þ

To write the site tensor in a more compact notation, we
define

ankðβ;ΔÞ ¼
X∞

νk¼−∞
Ink−2νkðβΔÞIνkðβð1 − ΔÞÞ; ðA8Þ

using which the tensor becomes

Tn1;n2;n3;n4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY4
k¼1

ankðβ;ΔÞ
vuut

×
X∞
l¼−∞

In1þn2−n3−n4þ2lðβhÞIlðβh1Þ: ðA9Þ

The partition function can be approximated using this
tensor description as a trace of the network:

Z ≈ tTr

�Y
s

Tn1;n2;n3;n4ðsÞ
�
: ðA10Þ

Here, tTr implies a tensor trace of the tensor network. We
show the site tensor and the partition function as a fully
contracted tensor network consisting of 4 × 4 lattice in
Figs. 5 and 6, respectively.
The magnetization is calculated using (9) and is

M ¼ P=Z, where Z is the partition function given in
(A10) and P is the modified contracted tensor network
with impure tensor inserted. The impure tensor correspond-
ing to M is given by

IM
n1n2n3n4 ¼

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY4
k¼1

ankðβ;ΔÞ
vuut ×

Xþ∞

l¼−∞
Ilðβh1Þ ×

�
In1þn2−n3−n4þ2l−1ðβhÞ þ In1þn2−n3−n4þ2lþ1ðβhÞ

2

�375: ðA11Þ

We can also compute the nematic magnetization M1 ¼ P1=Z with respect to the external field h1, and its impure tensor is
given as

IM1
n1n2n3n4 ¼

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY4
k¼1

ankðβ;ΔÞ
vuut ×

Xþ∞

l¼−∞
In1þn2−n3−n4þ2lðβhÞ ×

�
Ilþ1ðβh1Þ þ Il−1ðβh1Þ

2

�375: ðA12Þ
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Using M and M1, we can compute the magnetic suscep-
tibility for a range of external fields and locate the BKTand
half-BKT transitions.

APPENDIX B: NUMERICAL DATA TABLE

The following table shows the data for the critical
temperature computed using a real-space tensor network
method.

APPENDIX C: COLLECTION OF PLOTS
FOR RANGE OF Δ

In this appendix, we collect additional plots correspond-
ing to the data in Table I.

FIG. 5. The rank four site tensor. We set aðn1Þ and cðn2Þ
indices positive and bðn3Þ and dðn4Þ indices negative as
mentioned in (A9).

FIG. 6. A fully contracted tensor network T with periodic
boundary condition that gives the partition function Z on 4 × 4
lattice. Note that all the T are the same due to translational
symmetry.

TABLE I. The summary of the numerical results obtained in
this paper. TCv is the critical temperature determined from the
peak of specific heat with no external magnetic field, whereas
Th;h1→0 is the critical temperature determined from the peak of
magnetic susceptibility in the limit of vanishing external mag-
netic field, h and h1 respectively. We use the symmetry breaking
field h for q ¼ 1 (Δ∈ ½0.38; 0.80�) and h1 for q ¼ 2
(Δ∈ ½0.04; 0.36�) in Eq. (A1) to compute the critical temperature.
For T > 0.38, there is a single transition of the BKT universality
class. UntilΔ ¼ 0.32, we can resolve the half-BKTand Ising line,
but for Δ ¼ 0.34, 0.36 it is likely, based on our numerical results,
that the two transition lines i.e., Ising and half-BKT have merged.
ForΔ ≥ 0.40, there is no ambiguity, and transition corresponds to
the BKT class. If all the transition lines meet, they do so at
Δ ¼ 0.36ð2Þ. Our results are slightly more consistent with the
picture that first half-BKT and Ising lines meet around Δ ∼ 0.34,
and then the Ising line continues to merge with the BKT line
around Δ ¼ 0.36ð2Þ.
Δ TBKT;h;h1→0 TBKT;Cv

TIsing;Cv

0.04 0.880(1) 1.00(1) 0.08(1)
0.08 0.843(5) 0.95(1) 0.17(1)
0.12 0.803(5) 0.90(1) 0.26(1)
0.16 0.773(5) 0.86(1) 0.34(1)
0.20 0.755(7) 0.82(2) 0.42(2)
0.24 0.725(7) 0.78(2) 0.50(2)
0.28 0.678(3) 0.74(2) 0.58(2)
0.30 0.690(10) 0.72(1) 0.62(1)
0.32 0.685(8) 0.705(5) 0.64(2)
0.34 0.694(2) � � � 0.685(5)
0.36 0.720(1) � � � 0.715(5)
0.38 0.735(6) � � � 0.735(5)
0.40 0.756(3) 0.74(1) � � �
0.45 0.785(1) 0.78(1) � � �
0.50 0.798(8) 0.815(3) � � �
0.55 0.833(1) 0.84(1) � � �
0.60 0.849(1) 0.86(1) � � �
0.65 0.853(5) 0.88(1) � � �
0.72 0.886(1) 0.91(1) � � �
0.80 0.890(4) 0.95(1) � � �

FIG. 7. The variation of magnetic susceptibility, χ, with
temperature T for Δ ¼ 0.04.
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FIG. 8. Tc v/s h̄1 for Δ ¼ 0.04. a ¼ 0.880ð1Þ; b ¼ 0.766ð1Þ;
c ¼ 0.301ð1Þ.

FIG. 9. The variation of magnetic susceptibility, χ, with
temperature T for Δ ¼ 0.34.

FIG. 10. Tc v/s h̄1 for Δ ¼ 0.34. a ¼ 0.694ð2Þ; b ¼ 0.60ð5Þ;
c ¼ 0.37ð2Þ.

FIG. 11. The variation of magnetic susceptibility, χ, with
temperature T for Δ ¼ 0.65.

FIG. 12. Tc v/s h̄ for Δ ¼ 0.65. a ¼ 0.853ð5Þ; b ¼ 0.24ð2Þ;
c ¼ 0.22ð3Þ.

FIG. 13. The specific heat, Cv with T for Δ < 0.32, h; h1 ¼ 0.
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APPENDIX D: SYSTEMATIC ERROR ANALYSIS
FOR M AND D

The following table shows that free energy and mag-
netization do not show much variation as the range of
allowed m values increases at fixed volume, Δ; T and D.
The following plots show the scaling of free energy with

bond dimension D for different values of Δ and its
corresponding critical temperature.

FIG. 14. The specific heat, Cv with T for Δ ¼ 0.32, h; h1 ¼ 0.

FIG. 15. The specific heat, Cv with T for Δ∈ ½0.34; 0.4Þ,
h; h1 ¼ 0.

FIG. 16. The specific heat, Cv with T for Δ > 0.40, h; h1 ¼ 0.

TABLE II. The free energy and magnetization computed using
h1 field for Δ ¼ 0.34, T ≈ Tc ¼ 0.694 and lattice volume of
230 × 230 for a different range of values for m with D ¼ 91.

m F M1

½−20; 20� −0.5436041 0.486666
½−30; 30� −0.5436043 0.486616
½−40; 40� −0.5436043 0.486624
½−50; 50� −0.5436043 0.486863
½−60; 60� −0.5436046 0.486586
½−70; 70� −0.5436066 0.486928
½−80; 80� −0.5436041 0.486907

FIG. 17. D-scaling for Δ ¼ 0.16, m∈ ½−50; 50�, T ≈ Tc ¼
0.773, and volume is 230 × 230.

FIG. 18. D-scaling for Δ ¼ 0.34, m∈ ½−50; 50�, T ≈ Tc ¼
0.694, and volume is 230 × 230.

FIG. 19. D-scaling for Δ ¼ 0.65, m∈ ½−50; 50�, T ≈ Tc ¼
0.853, and volume is 230 × 230.
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