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We investigate the thermal phase structure of the Berenstein-Maldacena-Nastase matrix model using
nonperturbative lattice Monte Carlo calculations. Our main analyses span 3 orders of magnitude in the
coupling, involving systems with sizes up to Nτ ¼ 24 lattice sites and SUðNÞ gauge groups with
8 ≤ N ≤ 16. In addition, we carry out extended checks of discretization artifacts for Nτ ≤ 128 and
gauge group SU(4). We find results for the deconfinement temperature that interpolate between the
perturbative prediction at weak coupling and the large-N dual supergravity calculation at strong coupling.
While we confirm that the phase transition is first order for strong coupling, it appears to be continuous for
weaker couplings.
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I. INTRODUCTION

The idea of gauge-gravity duality allows us to investigate
aspects of quantum gravity by studying the dual gauge
theory and vice versa. For example, the thermodynamic
properties of maximally supersymmetric Yang-Mills
(SYM) theories in (pþ 1) dimensions with large SUðNÞ
gauge groups and strong ’t Hooft couplings capture
the semiclassical thermodynamics of nonextremal black
Dp branes [1]. The first concrete gauge-gravity duality
proposal [2] considered p ¼ 3, conjecturing an equivalence
between conformalN ¼ 4 SYM and type IIB supergravity
on AdS5 × S5. In lower dimensions p < 3, the situation is
more complicated because the supersymmetric gauge
theories are not conformal. This motivates the use of
nonperturbative lattice field theory calculations to analyze
these strongly coupled gauge theories to gain insights into
quantum aspects of the dual gravitational systems.
In recent years, there has been progress in extracting

p < 2 black hole physics from numerical Monte Carlo
analyses of the dual strongly coupled gauge theories at
finite temperatures and large N [3–32], which is currently

being extended to p ¼ 2 [33–36]. See Ref. [37] for a recent
review of these developments, including further references.
In the context of lattice calculations, the lower dimension-
ality helps both to reduce the computational costs as well as
to simplify the process of taking the continuum limit: As
discussed in Refs. [3,38–41], little to no fine-tuning is
required to recover the supersymmetric target theory in the
continuum limit.
When p ¼ 0, maximal SYM reduces to a quantum-

mechanical theory [42] best known due to a conjecture by
Banks, Fischler, Shenker and Susskind (BFSS) [43] that the
large-N limit of this model describes the strong-coupling
(M-theory) limit of type IIA string theory in the infinite-
momentum frame. Several groups have numerically studied
this “BFSS model,” using either a lattice discretization
of (Euclidean) time [3,5,9,14,17,18,20,21,23,26,32] or a
“nonlattice” momentum-space approach [4,7,8,10,15,19].
These investigations have reached sufficiently low tem-
peratures and large N to provide confidence that the
observed thermodynamic behavior approaches the lead-
ing-order prediction of the dual type IIA supergravity.
Fits to these numerical Monte Carlo results have also been
used to predict α0 and gs corrections to the classical
supergravity solutions from the dual SYM quantum
mechanics [8,17,19–21,32].
In the BFSS model, the thermal partition function is not

well defined since it includes integration over a non-
compact moduli space. This instability cannot be seen
directly in the black D0-brane thermodynamics described
by large-N supergravity, as it is a 1=N effect. Even so, it
means that Monte Carlo calculations of the BFSS model are

*Contact author: raghav.govind.jha@gmail.com
†Contact author: anosh.joseph@wits.ac.za
‡Contact author: david.schaich@liverpool.ac.uk

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 111, 094516 (2025)

2470-0010=2025=111(9)=094516(13) 094516-1 Published by the American Physical Society

https://orcid.org/0000-0003-2933-0102
https://orcid.org/0000-0003-4288-8207
https://orcid.org/0000-0002-9826-2951
https://ror.org/02vwzrd76
https://ror.org/03rp50x72
https://ror.org/04xs57h96
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.111.094516&domain=pdf&date_stamp=2025-05-27
https://doi.org/10.1103/PhysRevD.111.094516
https://doi.org/10.1103/PhysRevD.111.094516
https://doi.org/10.1103/PhysRevD.111.094516
https://doi.org/10.1103/PhysRevD.111.094516
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


unstable for any finite N [9]; as N increases, the system
may spend longer fluctuating around a metastable vacuum,
but this will eventually decay given sufficient time. The
standard way to address this issue and stabilize numerical
calculations is to deform the theory by adding a regulator
that gives a small mass to the scalars. This explicitly breaks
supersymmetry, and the extrapolation necessary to remove
this deformation can significantly increase the complexity
and costs of the calculations.
This motivates the alternative of studying the Berenstein-

Maldacena-Nastase (BMN) deformation of the BFSS
model [44], which describes the discrete light-cone quan-
tization compactification of M theory on the maximally
supersymmetric “pp-wave” background of 11d supergrav-
ity. The “BMN model” preserves maximal supersymmetry
and has a well-defined thermal partition function because
of the absence of flat directions, making it a better-behaved
system to study using Monte Carlo methods. Among
its many notable features [45–51], the BMN model
possesses a nontrivial finite-temperature phase diagram
with a high-temperature deconfined phase and a low-
temperature confined phase.1 In this sense, it resembles
higher-dimensional theories [24,25,33–36], while involv-
ing more modest computational costs in numerical analy-
ses. However, the gravity dual of the BMN model is more
complicated than that of the BFSS model and, therefore, is
less explored [47,51].
In this work, we study the phase diagram of the BMN

model on the lattice, determining critical deconfinement
transition temperatures at a range of couplings spanning 3
orders of magnitude from the perturbative regime to
stronger couplings that approach the supergravity solu-
tion. We carry out calculations with multiple lattice sizes
and numbers of colors N while also checking discretiza-
tion artifacts for our lattice action and evaluating the
Pfaffian of the fermion operator to ensure we do not
encounter a sign problem. This finalizes the investiga-
tions reported in preliminary form by our recent
conference proceedings [28,30]. We begin in the next
section by reviewing the BMN model and previous lattice
studies of it. In Sec. III, we discuss the simple lattice
formulation that we employ in this work, also addressing
discretization artifacts and the Pfaffian. Our numerical
results for the phase diagram are presented in Sec. IV,
including comparisons to predictions from perturbation
theory and the dual supergravity, as well as analyses of
the order of the transition. The data leading to these
results are available through Ref. [52]. We conclude in
Sec. V with a discussion of our plans for future work.

II. BMN MATRIX MODEL

Our starting point is the BFSSmodel in Euclidean time τ.
With an anti-Hermitian basis for the SUðNÞ generators,
Tr½TaTb� ¼ −δab, the continuum action takes the form

SBFSS ¼
N
4λ

Z
dτTr

�
−ðDτXiÞ2 −

1

2

X
i<j

½Xi; Xj�2

þ ΨT
αγ

αβ
τ DτΨβ þ

1ffiffiffi
2

p ΨT
αγ

αβ
i ½Xi;Ψβ�

�
; ð1Þ

where Dτ ¼ ∂τ þ ½A; ·� is the covariant derivative corre-
sponding to the gauge field A, Xi are the nine scalars of
the theory, and Ψα is a 16-component spinor. The indices
i; j ¼ 1;…; 9 while α; β ¼ 1;…; 16; the latter will gen-
erally be suppressed, and we have also suppressed the τ
dependence of all the fields. γi and γτ are 16 × 16 Euclidean
gamma matrices; in the next section, we will specify the
representation we employ for them. All fields transform
in the adjoint representation of the SUðNÞ gauge group.
In this (0þ 1)-dimensional setting, both the ’t Hooft
coupling λ≡ g2YMN and the Yang-Mills coupling g2YM
are dimensionful.
The theory defined by Eq. (1) has flat directions

when the scalar fields Xi commute with each other.
Supersymmetry preserves some of these flat directions at
the quantum level, which results in an ill-defined thermal
partition function as discussed in [9]. The BMN model
changes this by adding the following terms to the action:

Sμ ¼ −
N
4λ

Z
dτTr

��
μ

3
XI

�
2

þ
�
μ

6
XM

�
2

þ μ

4
ΨT

αγ
αβ
123Ψβ þ

ffiffiffi
2

p
μ

3
ϵIJKXIXJXK

�
; ð2Þ

with dimensionful deformation parameter μ. The indices
i, j divide into the two sets where I, J, K take values in
1,2,3 while M ¼ 4;…; 9. We also define

γ123 ≡ 1

3!
ϵIJKγIγJγK ¼ γ1γ2γ3: ð3Þ

For nonzero μ, the terms in Eq. (2) explicitly break the
SO(9) global symmetry of Eq. (1) down to SOð6Þ × SOð3Þ
while preserving all 16 supersymmetries of the theory.
Integrating over the fermions produces the Pfaffian of the
fermion operator, pfðMÞ. The Euclidean path integral in
the continuum then takes the form

Z ¼
Z

½DA�½DX�pfðMÞe−SB; ð4Þ

where the bosonic action is

1While the BFSS model has historically been expected to be
deconfined for all temperatures, Refs. [29,32] recently argued
that a confined phase persists in the BFSS limit in which the
BMN deformation is removed.
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SB ¼ −
N
4λ

Z
dτTr

�
ðDτXiÞ2 þ

1

2

X
i<j

½Xi; Xj�2 þ
�
μ

3
XI

�
2

þ
�
μ

6
XM

�
2

þ
ffiffiffi
2

p
μ

3
ϵIJKXIXJXK

�
ð5Þ

and the fermion operator is

MðA;XÞ ¼ γτDτ þ γi½Xi; ·� −
μ

4
γ123: ð6Þ

In addition to the usual classical vacuum with Xi ¼ 0,
this theory also has a large number of “fuzzy-sphere” vacua
in which the SO(3) scalars take nonzero values that satisfy
the relation

XI ∝ ϵIJKXJXK: ð7Þ

These vacua do not play a role in our current numerical
investigations, which can be confirmed through our open
data release [52]. In particular, as we will discuss further
below, we monitor several quantities that are sensitive to
fuzzy-sphere contributions, including the gauge-invariant
“scalar squares” Tr½X2

i � in addition to the scalar-trilinear
“Myers” term

M̂≡M
λ
¼

ffiffiffi
2

p

12N
1

λβ

�Z
dτϵIJKTrðXIXJXKÞ

�
; ð8Þ

which we make dimensionless by including a factor of λ.
In Eq. (8) we have introduced a finite temperature T

by formulating the BMN model on a temporal circle of
circumference β ¼ 1=T. The nonzero temperature breaks
supersymmetry, and according to gauge-gravity duality,
the finite-temperature theory corresponds to a black-hole
geometry in the dual supergravity. To make sure that the α0
corrections near the horizon of the dual black hole are
small, the system must be in the regime T=λ1=3 ≪ 1 and
μ=λ1=3 ≪ 1. It is convenient to define the dimensionless
coupling g≡ λ=μ3, in terms of which the latter constraint is
g ≫ 1. In our numerical calculations, we will identify the
critical temperature of the deconfinement transition by
fixing g and scanning in the dimensionless ratio T=μ,
which we will call just “the temperature.”
There are predictions for the critical temperature

ðT=μÞcrit in both the weak- and strong-coupling limits.
In weak-coupling limit g → 0, perturbative calculations
[53–55] predict a first-order deconfinement transition with
critical temperature

lim
g→0

T
μ

				
crit

¼ 1

12 ln 3
≈ 0.076: ð9Þ

In the N → ∞ planar limit, Refs. [54,55] also calculate the
OðgÞ and Oðg2Þ corrections:

T
μ

				
crit

¼ 1

12 ln 3
½1þ CNLOð27gÞ − CNNLOð27gÞ2 þ � � ��;

ð10Þ

where the perturbative expansion parameter is 27g, while

CNLO ¼ 26 · 5
34

≈ 4

and CNNLO ¼ 23 · 19 927
22 · 37

þ 1 765 769 ln 3
24 · 38

≈ 71:

For strong coupling g → ∞ with T ≪ λ1=3, the numerical
construction of the dual supergravity solutions at finite
temperature by Ref. [51] predicts a larger

lim
g→∞

T
μ

				
crit

≈ 0.106; ð11Þ

with the transition still first order.
Our ambition is to use nonperturbative lattice calcula-

tions to track ðT=μÞcrit as the system interpolates between
the weak-coupling limit of Eq. (9) and the strong-coupling
limit of Eq. (11), similar to what we did for the bosonic
sector of the BMN model in Refs. [56,57]. This goal is
strongly motivated by the duality with quantum gravity
discussed above, as well as by the small number of lattice
investigations so far. Only three other groups have pre-
viously studied the phase diagram of the BMN model on
the lattice [11,27,29].2 All of these three previous lattice
studies take different approaches to explore the phase
diagram of the theory, which also differ from our approach
presented below.
The earliest study, Ref. [11], was limited to a small

number of lattice sites (Nτ ¼ 5) and small numbers of
colors (N ¼ 3 and 5). Apart from constant rescalings of
fields and parameters, this work uses the same lattice action
as we describe in the next section. Converting to our
conventions, Ref. [11] fixes T=μ ¼ 1=3 and scans in the
coupling g—essentially the opposite of our approach—
finding a deconfinement transition with critical coupling
gcrit ≃ 0.035. While T=μ ¼ 1=3 is larger than both the
g → 0 and g → ∞ limits discussed above, the small values
of Nτ and N considered by Ref. [11] may make those limits
inapplicable.
In addition to significantly increasing the number of

lattice sites (focusing on Nτ ¼ 24) and colors (focusing on
N ¼ 8), Ref. [27] also employs a second-order discretiza-
tion of the covariant derivative, which introduces four new
parameters whose values were chosen to minimize lattice
artifacts in the inverse Dirac operator. This work fixes g by

2More recent lattice studies of the BMN model have focused
on “ungauging” [31] or the energy of the dual black D0-branes
[32] as opposed to the phase diagram of interest here.
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considering fixed values of μ=λ1=3 ¼ 1=g1=3, focusing on
9 ≥ μ=λ1=3 ≥ 1 that correspond to 0.00137 ≤ g ≤ 1. For
each fixed μ=λ1=3, Ref. [27] scans in a dimensionless
temperature T=λ1=3, which also differs from our approach
described below. For larger μ=λ1=3 ≳ 3 (weaker couplings
g≲ 0.037), this work observes distinct deconfinement and
SO(9)-symmetry-breaking transitions, all first order, which
merge for larger g.
Finally, Ref. [29] employs gauge fixing to the static

diagonal gauge, AðτÞ ¼ diagðα1;…; αNÞ=β, which reduces
the number of degrees of freedom and allows investigations
of lattice sizes up toNτ ¼ 48 and up to N ¼ 48 colors. This
work again fixes μ=λ1=3 and scans in T=λ1=3, focusing on
smaller 5=3 ≥ μ=λ1=3 ≤ 0.1 that imply stronger couplings
0.216 ≤ g ≤ 1000, with particular interest in the μ → 0
limit where the BMN model reduces to the BFSS
model. Reference [29] confirms the first-order nature
of the transition by presenting two-state signals in the
Polyakov loop for 2=3≳ μ=λ1=3 ≥ 0.17 corresponding to
3.4≲ g ≤ 216. For μ=λ1=3 ≈ 1=3 → g ≈ 27, the resulting
ðT=μÞcrit agrees with the strong-coupling limit in Eq. (11).
Larger critical temperatures at stronger couplings, with
fixed N ¼ 12, are attributed to finite-N corrections.

III. LATTICE FORMULATION AND
DISCRETIZATION ARTIFACTS

Like Ref. [11], and unlike Refs. [27,29], we use a
simple gauge-invariant lattice discretization to formulate
the BMN matrix model on a one-dimensional Euclidean
lattice with thermal boundary conditions (periodic for
the bosons and antiperiodic for the fermions). The
temporal extent of the lattice, β ¼ aNτ, is divided
among Nτ sites separated by lattice spacing “a.” The
corresponding temperature is T ¼ 1=ðaNτÞ. Our numeri-
cal calculations involve the dimensionless lattice param-
eters μlat ¼ aμ and λlat ¼ a3λ. Rather than considering
the ratio T=λ1=3 used by Refs. [27,29], we focus on the
dimensionless parameters introduced in the previous
section, which remain consistent in both the lattice
and continuum theories:

T
μ
¼ 1

Nτμlat
; g≡ λ

μ3
¼ λlat

μ3lat
: ð12Þ

In a similar way, because we made the Myers term
dimensionless in Eq. (8); on the lattice it is simply

M̂ ¼
ffiffiffi
2

p

12NλlatNτ

�XNτ−1

n¼0

ϵIJKTrðXIXJXKÞ
�
: ð13Þ

We use the following lattice discretization of the covar-
iant derivative:

Dτ ¼
�

0 Dþ
τ

D−
τ 0

�
; ð14Þ

where D−
τ is the adjoint of Dþ

τ . The finite-difference
operator Dþ

τ acts on the fermions at lattice site n as

Dþ
τ Ψn ¼ UðnÞΨnþ1U†ðnÞ −Ψn; ð15Þ

where UðnÞ is the Wilson gauge link connecting site n
and site nþ 1. That is, under an SUðNÞ lattice gauge
transformation, UðnÞ → GðnÞUðnÞG†ðnþ 1Þ. U†ðnÞ is
the adjoint link with the opposite orientation. Our choice
of Dτ provides the correct number of fermions, free from
extraneous “doublers,” which is readily seen by setting the
gauge links to unit matrices and computing detDτ ¼
det ðΔþΔ−Þ, the determinant of the scalar Laplacian.
The resulting bosonic action of the lattice theory is

SB ¼ −
N
4λlat

XNτ−1

n¼0

Tr

�
ðDτXi

nÞ2 þ
1

2

X
i<j

½Xi
n; X

j
n�2

þ
�
μlat
3

XI
n

�
2

þ
�
μlat
6

XM
n

�
2

þ
ffiffiffi
2

p
μlat
3

ϵIJKXI
nXJ

nXK
n

�
;

ð16Þ

while the fermion operator MðU;XÞ matches Eq. (6) with
the covariant derivative Dτ replaced by the finite-difference
operator Dτ. For the gamma matrices we use a representa-
tion where γ8 and γ9 ¼ −iI16 are diagonal while

γτ ¼
�

0 I8
I8 0

�
¼ σ1 ⊗ I8 ð17Þ

and the other γ matrices are all real, with iσ2 in the
outermost Kronecker product—see Appendix A for further
details or Ref. [58] for the explicit construction.
The lattice action as a whole is finite in lattice perturbation

theory. The only divergences that can occur arise from a one-
loop fermion tadpole, which vanishes in a non-Abelian
theory because of gauge invariance. This is shown for the
BFSS model in Ref. [3], which remains applicable in the
BMN case. Hence, at the classical level, the systemwill flow
to the correct continuum supersymmetric target theory
without fine-tuning as the lattice spacing is reduced. Thus,
the continuum limit is obtained by extrapolating Nτ → ∞
with g and T=μ fixed, while the thermodynamic limit
corresponds to increasing the number of colors, N → ∞.
In numerical calculations, we use the standard rational

hybrid Monte Carlo (RHMC) algorithm [59], which we
have implemented in the publicly available parallel soft-
ware package for lattice supersymmetry [58] presented by
Ref. [60]. In contrast to the higher-dimensional theories
that Ref. [60] focuses on, for the BMN model, we employ
the gauge-invariant Haar measure in the lattice path integral
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Z ¼
Z

½DU�½DX�pfðMÞe−SB ð18Þ

and do not preserve any exact supersymmetries at nonzero
lattice spacing a > 0. The RHMC algorithm can encounter
instabilities when the coupling g is too strong, in a way that
depends on both the lattice action as well as the lattice
spacing set by Nτ. For the simple lattice action above, and
considering our coarsest lattice spacing with Nτ ¼ 8, we
encounter instabilities for g≳ 0.025, significantly smaller
than the values reached by Refs. [27,29]. This may motivate
switching to a more complicated improved action in
future work.
Lattice discretization introduces a-dependent artifacts in

numerical calculations, which also depend on the lattice
action and typically increase with g. In particular, we have
observed that for our simple lattice action, discretization
artifacts break the expected SO(6) symmetry [28,30].
Specifically, the six gauge-invariant Tr½X2

M� split into a
set of two with larger values and a set of four with smaller
values—still significantly larger than the three Tr½X2

I �. To
quantify this effect, we consider the ratio

RSOð6Þ ≡
hTr½X2

ð2Þ�i − hTr½X2
ð4Þ�i

hTr½X2
ð6Þ�i

; ð19Þ

where hTr½X2
ð2Þ�i, hTr½X2

ð4Þ�i, and hTr½X2
ð6Þ�i average over

the two larger traces, the four smaller traces and all six of
them, respectively. In Fig. 1, we plot this ratio for three
different couplings g ¼ 0.001, 0.002, and 0.01, considering
a small SU(4) gauge group to access large lattice sizes up to
Nτ ¼ 128 close to the continuum limit. We find that the
SO(6) breaking vanishes linearly in the Nτ → ∞ con-
tinuum limit, confirming that it is merely a discretization
artifact, which may be reduced or removed by employing
an improved lattice action in future work.
One other complication is that the RHMC algorithm

treats the factor of pfðMÞe−SB in the path integral Eq. (18)
as a real, positive Boltzmann weight. However, our lattice
discretization of the BMN model allows the Pfaffian to be
complex, pfðMÞ ¼ jpfðMÞjeiϕ. We proceed by “quench-
ing” the phase eiϕ → 1 [60], which in principle requires
reweighting in order to recover the true expectation values
hOi from phase-quenched (pq) calculations. That is,

hOi ¼
R ½DU�½DX�Oe−SBpfðMÞR ½DU�½DX�e−SBpfðMÞ ¼ hOeiϕipq

heiϕipq
; ð20Þ

where hOipq ¼
R ½DU�½DX�Oe−SB jpfðMÞjR ½DU�½DX�e−SB jpfðMÞj : ð21Þ

Reweighting requires computationally expensive mea-
surements of the Pfaffian phase heiϕipq and fails if this

expectation value is consistent with zero (a “sign
problem”).
In Figs. 2 and 3, we present some checks of the phase of

the Pfaffian heiϕipq, which show that our phase-quenched
numerical results are not significantly affected by phase
reweighting. In Fig. 2 we again consider gauge group
SU(4), plotting the real part of heiϕipq against λlat ¼
g=½ðT=μÞNτ�3. The rightmost point for each dataset corre-
sponds to Nτ ¼ 8, while the largest systems we consider
here have Nτ ¼ 24. For Nτ ¼ 24, the Pfaffian phase
measurement for a single field configuration is roughly
300 times more computationally expensive than generating
a single molecular dynamics time unit (MDTU) with the
RHMC algorithm. The plot confirms that the Pfaffian

FIG. 1. Confirming that the SO(6) symmetry breaking observed
with our lattice formulation is a discretization artifact that
vanishes in the Nτ → ∞ continuum limit. These tests consider
gauge group SU(4) to enable computations with large Nτ ≤ 128
for three different g ¼ 0.001, 0.002 and 0.01.

FIG. 2. The real part of heiϕipq plotted vs λlat ∝ 1=N3
τ for gauge

group SU(4) confirms that the Pfaffian becomes real and positive
in the Nτ → ∞ continuum limit where λlat → 0.
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becomes real and positive in the Nτ → ∞ continuum limit,
with no sign problem for sufficiently large lattices.
Finally, Fig. 3 shows the same quantity for some SU(8)

systems similar to (but smaller than) those we analyze to
determine the phase diagram in the next section. Here
Nτ ¼ 8 and the computational cost for each Pfaffian phase
measurement increases to roughly 3000 times the cost of
generating an MDTU with the RHMC algorithm. We
consider three values of g ¼ 10−5, 10−4, and 0.001 (from
top to bottom) and plot the results against values of T=μ
ranging from the confined phase to the deconfined phase.
We can clearly see that the Pfaffian phase fluctuations
increase as the coupling increases and as the temperature
decreases. Because the rightmost green point for g ¼ 0.001
matches the corresponding point in Fig. 2 apart from the
different gauge group, we can also check that the fluctua-
tions increase from 1 − heiϕipq ¼ 0.0113ð14Þ for N ¼ 4 to
0.0501(84) forN ¼ 8. These Pfaffian phase fluctuations are
likely related to the instabilities we observe for Nτ ¼ 8 and
g≳ 0.025, motivating us to impose a minimumNτ ≥ 16 for
strong couplings g ≥ 0.001 in our main calculations, to
which we now turn.

IV. PHASE DIAGRAM RESULTS

We organize our lattice investigations of the deconfine-
ment transition in terms of the dimensionless parameters g
and T=μ discussed above, Eq. (12). We consider four fixed
values of the coupling that span 3 orders of magnitude:
g ¼ 10−5, 10−4, 0.001, and 0.01. In each case, we deter-
mine the transition temperature by scanning in the ratio
T=μ, generating Oð10Þ ensembles that range from the
confined phase to the deconfined phase. As discussed at the
end of Sec. II, this differs from the approaches taken by
prior studies [11,27,29], most of which also employ

different lattice actions. To explore the thermodynamic
limit where the number of colors N → ∞, for each g we
repeat this procedure for up to three values of N ¼ 8, 12,
and 16. To explore the continuum limit where the number
of lattice sites Nτ → ∞, for each ðg; NÞ we consider two
lattice sizes, either Nτ ¼ 8 and 16 for the two weaker
couplings g ≤ 10−4 or Nτ ¼ 16 and 24 for the two stronger
couplings g ≥ 0.001. Table I summarizes these details. In
total, these calculations involve 261 ensembles. Full
information about them and the 35 additional SU(4) and
SU(8) ensembles considered in the previous section is
available in our open data release [52].
To study the deconfinement transition of the BMN

model, we focus on the Polyakov loop

hjPLji ¼ 1

N

*					Tr
"YNτ−1

n¼0

UτðnÞ
#					
+

≡ 1

N
hjTr½P�ji: ð22Þ

That is, by “Polyakov loop” we refer specifically to the
magnitude of the trace of the holonomy along the temporal

FIG. 3. The real part of heiϕipq plotted vs T=μ for gauge group
SU(8) with Nτ ¼ 8 and three values of g ¼ 10−5, 10−4 and 0.001
(from top to bottom). The Pfaffian phase fluctuations increase as
g increases and as T=μ decreases, which is likely related to
instabilities in calculations with g≳ 0.025 for this small Nτ ¼ 8.

TABLE I. Summary of the 261 SU(8), SU(12) and SU(16)
ensembles used in our lattice analyses of the BMN model phase
diagram, with two determinations of the critical transition
temperature ðT=μÞcrit for each fg; N;Nτg. The fifth column
reports ðT=μÞcrit corresponding to the maximum Polyakov loop
susceptibility, while the sixth column considers instead the fit to
the sigmoid ansatz Eq. (24) discussed in Sec. IV. Both estimates
agree within uncertainties, with the generally large χ2=d:o:f: of
the sigmoid fits suggesting the corresponding uncertainties on
ðT=μÞcrit are underestimated. Full information, including 35
additional SU(4) and SU(8) ensembles, is available in Ref. [52].

g N Nτ ♯ ens. maxðχÞ Sigmoid fit χ2=d:o:f:

0.01 8 16 19 0.100(2) 0.10098(19) 1.7
0.01 8 24 12 0.098(2) 0.10029(64) 0.01
0.01 12 16 12 0.100(2) 0.10073(31) 4.6
0.01 12 24 14 0.100(2) 0.10054(27) 3.0
0.01 16 16 8 0.099(1) 0.099598(58) 4.9
0.01 16 24 8 0.100(1) 0.099714(48) 2.0

0.001 8 16 21 0.082(2) 0.082917(81) 13
0.001 8 24 12 0.082(2) 0.08135(52) 5.5
0.001 12 16 13 0.082(2) 0.08285(19) 15
0.001 12 24 14 0.082(2) 0.082448(44) 54
0.001 16 16 10 0.082(1) 0.082445(31) 19
0.001 16 24 10 0.082(1) 0.082251(35) 19

10−4 8 8 16 0.076(2) 0.07602(18) 16
10−4 8 16 14 0.076(2) 0.07684(19) 8.9
10−4 12 8 13 0.076(2) 0.076504(63) 7.9
10−4 12 16 12 0.076(2) 0.076767(62) 6.8

10−5 8 8 14 0.074(2) 0.075435(63) 28
10−5 8 16 13 0.076(2) 0.075856(98) 7.8
10−5 12 8 13 0.074(2) 0.075352(83) 3.6
10−5 12 16 13 0.076(2) 0.075631(71) 5.1
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circle, with that holonomy itself corresponding to the
N × N matrix P. In the large-N limit, hjPLji is an order
parameter for the spontaneous breaking of the ZN center
symmetry, which vanishes in the confined phase while
remaining nonzero in the deconfined phase.
This behavior is illustrated by the left-hand plots in

Figs. 4 and 5, which show the Polyakov loop increasing as
T=μ increases from the confined to the deconfined phase.
Figure 4 compares all four values of the coupling g for fixed
Nτ ¼ 16 and gauge group SU(12), while Fig. 5 compares
the three gauge groups for fixed Nτ ¼ 24 and g ¼ 0.01.
(There is very little dependence on Nτ with g and N fixed,
which can be seen from Table I.) The right-hand plots in
these figures present the corresponding Polyakov loop
susceptibility

χjPLj ≡ hjPLj2i − hjPLji2; ð23Þ

which exhibits a peak at the critical temperature ðT=μÞcrit
of the deconfinement transition. By eye, Fig. 4 clearly
shows the expected behavior, with ðT=μÞcrit moving from
around the weak-coupling limit Eq. (9) toward the strong-
coupling supergravity prediction Eq. (11) (marked by the
vertical red line) as the coupling increases. Recall that the
latter value corresponds to the large-N, g → ∞ limit of
the continuum theory and is not a strict bound on our
finite-N calculations.
We can obtain simple estimates for ðT=μÞcrit from the

locations of the susceptibility peaks. These estimates are
collected in Table I but are limited by the discrete values of
T=μ we have analyzed. In principle, this can be improved
by using multiensemble reweighting to interpolate between
these values [61,62]. Here, we instead take a simpler
approach of interpolating our results for the Polyakov loop
itself. Specifically, we fit hjPLji to the four-parameter
sigmoid ansatz [28,30]

FIG. 4. Results for the Polyakov loop (left) and its susceptibility (right) plotted against T=μ and computed with a fixed number of sites
Nτ ¼ 16 for gauge group SU(12). The four datasets correspond to four values of the coupling g spanning 3 orders of magnitude. The
transition moves to larger ðT=μÞcrit as g increases. The lines on the left plot are fits to the sigmoid ansatz in Eq. (24). The vertical red line
in the right plot indicates the classical supergravity prediction in the large-N continuum g → ∞ limit, Eq. (11).

FIG. 5. The Polyakov loop (left) and its susceptibility (right) as in Fig. 4, now fixing Nτ ¼ 24 and g ¼ 0.01 with three datasets
corresponding to different numbers of colors N ¼ 8, 12, and 16. The susceptibility peak at the critical temperature becomes higher as N
increases toward the thermodynamic limit.
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Σ ¼ A −
B

1þ exp ½CðT=μ −DÞ� : ð24Þ

All four parameters are necessary since our finite-N
Polyakov loop results are nonzero for all temperatures.
We also need to omit the highest- and lowest-temperature
points from the fits in order to keep the χ2=d:o:f: under
control. These fits correspond to the solid lines in the left-
hand plots of Figs. 4 and 5, which extend only as far as the
subset of points that are included.
The transition temperature ðT=μÞcrit is given by the fit

parameter D that corresponds to the inflection point where
the sigmoid’s slope is maximized:

d2Σ
dðT=μÞ2 ∝ 1 −

2 exp ½CðT=μ −DÞ�
1þ exp ½CðT=μ −DÞ� ¼ 0

⇒ CðT=μ −DÞ ¼ 0:

As shown by Table I, our fits produce values for ðT=μÞcrit
with small uncertainties, which are fully consistent with the
susceptibility peaks. However, Table I also shows that the
fits typically involve uncomfortably large χ2=d:o:f:, sug-
gesting that these small uncertainties are likely under-
estimated. We therefore proceed by using the central values
from the sigmoid fits but the more conservative uncertain-
ties from the susceptibility peaks. This approach should
account for systematic effects (e.g., from the choices of
ansatz and fit range) in addition to purely statistical
uncertainties.
The results we obtain in this way are used to produce

the ðT=μÞcrit vs g phase diagram shown in Fig. 6. While
we have only two lattice sizes Nτ for each fN; gg, from
Table I we can see that all these pairs of ðT=μÞcrit results
agree within uncertainties. We therefore average each pair
by fitting to a constant, which leaves a single degree of
freedom and produces very small 0.005≲ χ2=d:o:f:≲ 0.3.
Figure 6 shows these averages for each fN; gg, making
it clear that there is also no visible N dependence in
our results.
At weak coupling g≲ 10−4 we find critical temperatures

in excellent agreement with NNLO perturbation theory in
the N → ∞ planar limit, Eq. (10). Because we use the
perturbative expansion parameter 27g on the horizontal
axis, these points appear at 27g≲ 0.003. Perturbation
theory breaks down around 27g ≈ 0.05 due to the rela-
tively large coefficient CNNLO ≈ 71 in Eq. (10). Our non-
perturbative numerical results monotonically increase as g
increases, approaching the large-N, strong-coupling super-
gravity prediction from Eq. (11), which is marked by a
horizontal red line in Fig. 6. In fact, it is remarkable how
close we get to this g → ∞ limit given our modest g ≤ 0.01.
If we were able to reach stronger couplings, we might
observe our finite-N lattice calculations exceeding the
large-N supergravity prediction, as in Ref. [29], but this
will require future work to implement an improved lattice

action. In parallel, our results also provide motivation for
dual-supergravity calculations to attempt to determine the
functional dependence of ðT=μÞcrit on g, to compare with
the numerical results we have obtained.
Although we have now presented our main results for the

BMN model phase diagram in Fig. 6, there are two more
analyses we can carry out based on the Polyakov loop.
First, we confirm that we are, in fact, dealing with the
expected transition between confined and deconfined
phases [as opposed to the fuzzy-sphere vacua correspond-
ing to Eq. (7)] by considering the eigenvalues of the N × N
matrix P, Eq. (22). In the high-temperature deconfined
phase, these N eigenvalues for a given field configuration
should all be aligned around one of the ZN vacua, with a
localized distribution of complex phases. In the low-
temperature confined phase, we should have instead a
uniform distribution of eigenvalue phases around the unit
circle [63–65]. While it is possible to estimate ðT=μÞcrit (in
the large-N limit) by determining the temperature at which
the eigenvalue phase distribution first spreads out to cover
½−π; πÞ with no gap remaining [65,66], here we simply
check systems on either side of the transition. Figure 7
shows a representative check, for Nτ ¼ 16 and g ¼ 0.01,
comparing SUðNÞ gauge groups with N ¼ 8, 12 and 16.
For T=μ ¼ 0.094 below the transition, we see that the
distributions become broader as N increases, consistent
with the uniform distribution expected for the confined
phase in the large-N limit. For T=μ ¼ 0.104 above the
transition, the distributions become more localized as N
increases, as expected for the deconfined phase.
Second and finally, we study the scaling of the Polyakov

loop susceptibility peak χmax with the number of degrees of
freedom ∝ N2, which can distinguish between first-order
and continuous transitions. Already in Fig. 5, we can see

FIG. 6. The critical temperature of the transition, ðT=μÞcrit, vs
the coupling g on semilog axes, from Nτ → ∞ extrapolations
described in the text. The horizontal red line is the g → ∞
supergravity prediction from Ref. [51] while the blue curve is the
NNLO perturbative prediction (with expansion parameter 27g)
in Eq. (10).
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that the peak becomes higher as N increases towards the
N → ∞ thermodynamic limit. In Fig. 8, we plot χmax

againstN2 on log-log axes for couplings g ¼ 0.01 (top) and
g ¼ 0.001 (bottom) and fit the data to a power law:

χmax ¼ CN2b; ð25Þ

whereC and b are fit parameters. For the strongest coupling
g ¼ 0.01, the critical exponent is b ¼ 0.866ð29Þ for
Nτ ¼ 16, increasing to 0.909(26) for Nτ ¼ 24 (with only
statistical uncertainties). These results are consistent with
the first-order value b ¼ 1 [67–71] in the continuum limit
Nτ → ∞. The g ¼ 0.001 results are also close to one,
although with no dependence on Nτ at all: b ¼ 0.816ð32Þ
and 0.815(34) for Nτ ¼ 16 and 24, respectively. These fits
leave a single degree of freedom and feature reason-
able 0.2≲ χ2=d:o:f:≲ 1.7.

Using perturbative calculations to compute an effective
action, Ref. [55] suggests that the BMN phase transition
remains first order in the weakly coupled regime. For
g ≤ 10−4, we can report only rougher results due to the
smaller Nτ ¼ 8 and 16 we consider (cf. Table I), each with
only two gauge groups SU(8) and SU(12). Still, these
ðT=μÞcrit allow us to estimate the critical exponent (neglect-
ing uncertainties), and we observe that it now becomes
smaller as Nτ increases toward the continuum limit.
Specifically, for g ¼ 10−4 we find that b decreases from
0.85 to 0.61 as Nτ increases from 8 to 16. Similarly, for
g ¼ 10−5, b ≃ 0.71 for Nτ ¼ 8 decreases to 0.59 for
Nτ ¼ 16. These results suggest that although we have a
first-order transition for strong couplings g≳ 0.001, the
transition appears to be continuous for weaker couplings
g≲ 10−4. Future work is needed to confirm this and search
for a possible critical end point g⋆ to the line of strong-
coupling first-order transitions.

V. CONCLUSIONS

We have presented results from our numerical
Monte Carlo investigations of the BMN matrix model
on the lattice, featuring our determination of the critical
temperature of the model’s deconfinement phase transition
for dimensionless couplings g that span 3 orders of
magnitude from the perturbative regime toward the domain
of the dual supergravity, Fig. 6. Considering multiple
SUðNÞ gauge groups and lattice sizes Nτ for each g, we
reproduce ðT=μÞcrit from perturbation theory for g≲ 10−4

while approaching the large-N strong-coupling limit from
gauge-gravity duality [51] for g≳ 0.001. We have also
analyzed the order of the transition, finding that the first-
order transition for strong couplings appears to become
continuous for weaker g≲ 10−4.
While our results appear broadly consistent with previous

lattice studies of the BMNmodel’s phase diagram [11,27,29],

FIG. 7. Angular distributions of Polyakov loop eigenvalue phases for Nτ ¼ 16 and g ¼ 0.01, comparing SUðNÞ gauge groups with
N ¼ 8, 12 and 16. Left: for T=μ ¼ 0.094 below the transition, the distributions become broader as N increases, consistent with the
uniform distribution expected for the confined phase in the large-N limit. Right: for T=μ ¼ 0.104 above the transition, the distributions
become more localized as N increases, as expected for the deconfined phase.

FIG. 8. The scaling of the susceptibility peak χmax with the
number of degrees of freedom ∝ N2 on log-log axes. The solid
and dashed lines are power-law fits with fixed Nτ ¼ 16 and 24,
respectively.
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our approach differs by both our choice of lattice discretization
as well as our strategy for analyzing the system. In particular,
discretization-dependent instabilities in RHMC calculations
restrict us to couplings g≲ 0.025 significantly smaller than
those reached by Refs. [27,29]. We have discussed related
discretization artifacts, including the phase of the fermion
operator Pfaffian, which we observe to fluctuate significantly
at strong coupling and large lattice spacing, Fig. 3. Despite
this, a sign problem can be avoided by working with
sufficiently small lattice spacings, which make the Pfaffian
real and positive, Fig. 2.
Given the relatively small g ≤ 0.01 we consider, it is

remarkable how close our results in Fig. 6 get to the g → ∞
limit from Ref. [51]. As discussed at the end of Sec. II, it is
possible that finite-N corrections may allow ðT=μÞcrit to
exceed this strong-coupling limit [29]. This motivates
further calculations with stronger couplings as well as
larger values of N in order to carry out better-controlled
extrapolations to the N2 → ∞ thermodynamic limit. From
our investigations of discretization artifacts and the Pfaffian
in Sec. III, we can appreciate that this will require either (or
both) analyzing larger lattice sizes Nτ or switching to an
improved lattice action. Larger Nτ will also enable better-
controlled continuum extrapolations than were possible in
this work. In addition, considering larger SUðNÞ gauge
groups is also important at weaker couplings to improve the
scaling analyses that suggest the deconfinement transition
becomes continuous rather than first order. If this obser-
vation is confirmed, it will be interesting to search for the
critical end point g⋆ to the line of first-order transitions at
stronger couplings.
In general, the BMN model remains less explored than

the μ → 0 BFSS limit, and there are further investigations
we may pursue using numerical lattice Monte Carlo
calculations. These include computations of the internal
energy of the system as a function of temperature [32], as
well as analyses of the additional fuzzy-sphere vacua
corresponding to Eq. (7) [27] or the effects of ungauging
the system [31].
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APPENDIX A: GAMMA MATRICES

In order to construct the lattice action for the BMN
model, we need to choose a basis to represent the 16 × 16
matrices γi, γτ and γ123. In terms of the real 2 × 2 matrices

X ≡ σ1 ¼
�
0 1

1 0

�
;

Y ≡ −iσ2 ¼
�
0 −1
1 0

�
;

Z≡ σ3 ¼
�
1 0

0 −1

�
;

1≡ I2 ¼
�
1 0

0 1

�
;

the representation we employ can be written as the
following Kronecker products:

γ1 ¼ Y ⊗ Y ⊗ Y ⊗ Y;

γ2 ¼ Y ⊗ X ⊗ Y ⊗ 1;

γ3 ¼ Y ⊗ Z ⊗ Y ⊗ 1;

γ123 ¼ Y ⊗ X ⊗ Y ⊗ Y;

γ4 ¼ Y ⊗ Y ⊗ 1 ⊗ X;

γ5 ¼ Y ⊗ Y ⊗ 1 ⊗ Z;

γ6 ¼ Y ⊗ 1 ⊗ X ⊗ Y;

γ7 ¼ Y ⊗ 1 ⊗ Z ⊗ Y;

γ8 ¼ −Z ⊗ 1 ⊗ 1 ⊗ 1;

γ9 ¼ −i1 ⊗ 1 ⊗ 1 ⊗ 1;

γτ ¼ X ⊗ 1 ⊗ 1 ⊗ 1:

These expressions match the discussion around Eq. (17)
and can be checked against the explicit implementation
in Ref. [58].
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APPENDIX B: NUMERICAL RESULTS

Table I summarizes the 261 lattice ensembles used in our
numerical analyses of the BMN model’s phase diagram,
including the results for the critical temperatures ðT=μÞcrit
obtained from both susceptibility peaks as well as sigmoid
fits to the Polyakov loop itself, Eq. (24). The final column
reports the χ2=d:o:f: of the corresponding sigmoid fit. For
each value of the dimensionless coupling g spanning 3
orders of magnitude, we consider multiple SUðNÞ gauge
groups up toN ¼ 16 and two lattice sizes up toNτ ¼ 24. In
every case, we use the RHMC algorithm [59] implemented
by our publicly available parallel software for lattice
supersymmetry [58,60] to generate Oð10Þ ensembles that
range from the confined phase to the deconfined phase. For
each ensemble, we typically generate 5000 MDTU, using
unit-length trajectories in the RHMC algorithm, and
impose a thermalization cut after human inspection of
automated time-series plots. We generated and analyzed 35
additional ensembles with gauge groups SU(4) and SU(8)
to carry out the checks of discretization artifacts and the
Pfaffian phase discussed in Sec. III.
For each ensemble, simple observables including the

Polyakov loop, the Myers term Eq. (13) and the gauge-
invariant “scalar squares” Tr½X2

i � are measured after every
RHMC trajectory of length 1 MDTU. These data confirm
that the fuzzy-sphere vacua corresponding to Eq. (7) do not
play a role in our current numerical investigations. More
involved computations of the extremal eigenvalues of the

squared fermion operator M†M are done using configu-
rations saved to disk every 10 MDTU. These eigenvalue
computations are performed using a Davidson-type method
provided by the preconditioned iterative multi-method
eigensolver (PRIMME) library [72]. We require that the
extremal eigenvalues remain within the spectral range
where the rational approximation used in the RHMC
algorithm is reliable.
After generating configurations and carrying out

extremal eigenvalue measurements, we use the autocorr
module in EMCEE [73] to estimate autocorrelation times τ
for three relevant quantities. These are the magnitude of the
Polyakov loop, the lowest eigenvalue of M†M, and a
representative scalar square, Tr½X2

9�. We divide our ther-
malized measurements into blocks for jackknife analyses,
confirming that our default block size of 100 MDTU is
always larger than all three autocorrelation times. Our
approach ensures that at least 31 statistically independent
blocks are available for each ensemble, more than enough
for robust analyses. For the 27 SU(4) and SU(8) ensembles
we use to carry out more expensive measurements of the
fermion operator Pfaffian, we compute pfðMÞ only once
per jackknife block, in other words using every tenth saved
configuration after the thermalization cut.
For all 296 ensembles, all of this information and more is

presented in our open data release Ref. [52], which also
provides the bulk of the computational work flow needed to
reproduce, check, and extend our analyses.
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