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Positive geometries for all scalar theories from twisted intersection theory
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We show that accordiohedra furnish polytopes which encode amplitudes for all massive scalar field theories
with generic interactions. This is done by deriving integral formulas for the Feynman diagrams at the tree level
and integrands at the one-loop level in the planar limit using the twisted intersection theory of convex realizations
of the accordiohedron polytopes.
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I. INTRODUCTION

The study of scattering amplitudes in the past decade has
revealed a number of surprising connections with mathemat-
ics. Crucially, deep ties to geometry, topology, and combi-
natorics [1–36] have been established, which have led to the
discovery of new ways of computing these amplitudes.

In this work we focus on building upon the seminal
developments in the past few years, namely, the positive
geometry program due to Arkani-Hamed et al. [7] and the
twisted intersection theory of Mizera [2]. In these works it
was seen that for a wide class of theories built out of trivalent
vertices, the planar Feynman diagrams are encoded by the
geometry of a polytope known as the associahedron. This was
extended to massless scalar theories with generic interactions
in [17], in which a polytope known as the accordiohedron was
introduced. In this paper we propose a broad generalization of
this line of research by applying the technology of intersection
theory to the accordiohedron polytopes.

We seek to address two open questions in the literature.
These are as follows. So far, attention has been restricted to
the handling of massless interacting particles. The reason for
this is the specific realization of the associahedra as convex
polytopes, which puts severe restrictions on the masses of the
interacting particles. Here we extend the positive geometry
program to all scalar theories while utilizing a convex realiza-
tion of accordiohedra that removes this restriction on the mass
and are thus able to treat without any difficulty the interactions
between particles of arbitrary mass.

As far as the positive geometry program is concerned,
loop effects have been difficult to incorporate. Technical
restrictions have forced us to only deal with φ3 interactions
among massless particles at the one-loop level. We rectify

*nkalyanapuram@perimeterinstitute.ca
†rjha1@perimeterinstitute.ca

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

this by proposing a class of accordiohedra which describes
interactions between particles in any scalar theory at the one-
loop level, in the planar limit. Our construction also allows us
to handle different kinds of Feynman diagrams separately, for
example, allowing us to treat tadpoles and bubble diagrams
distinctly.

Let us briefly discuss what has is done in the paper
and the organization of the text. What is accomplished is a
generalization of the positive geometry framework to take
care of massive particles as well. This is done in Sec. II.
Following this, in Sec. III we also describe a simple example
indicating that the story can be pushed to at least one-loop
order in arbitrary theories and point out the problems involved
in higher-loop cases. In doing so we rectify a problem which
has been ignored in the literature, namely, the handling of
symmetry factors in Feynman diagrams.

II. MASSIVE φ3 + φ4 SCALAR THEORIES

In this section we describe how the twisted intersection
theory of accordiohedra can be used to compute scattering
amplitudes for generic scalar theories involving massive par-
ticles.

Much of the work on positive geometries for scalar theories
beyond φ3 has been done quite recently. For the case of φ4 and
φp interactions, the relevant papers are [12,16], respectively.
The formalism for studying generic theories was worked out
in [17]. Conspicuously, the analysis in these papers worked
specifically for massless particles.

In this section we illustrate how the positive geometry
formalism can accommodate massive particles through a de-
velopment of the intersection theory governing amplitudes
in massive scalar theories with φ3 + φ4 interactions. It will
turn out that this is the right arena to generalize the study of
polytopes controlling these amplitudes for massless particles
to massive ones. To do this, we make use of the accordiohe-
dron data first presented in [17] and the method of realizing
these as convex polytopes reviewed in [37]. To keep the
discussion simple, let us restrict ourselves to the case of
six-particle scattering. This particular process gives rise to
two classes of accordiohedra, namely, squares and pentagons.
Let us begin with the square, which is obtained from the
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FIG. 1. Two-dimensional accordiohedron for the reference dis-
section (13,46). The reference dissection is at the top right.

dissection (13,46). The accordiohedron vertices are labeled
by {(13, 46), (24, 46), (26, 35), (13, 35)}.1 Accordingly, the
codimension-1 boundaries are labeled by the partial dissec-
tions {(13), (46), (26), (35)}. This is illustrated by Fig. 1.

The next task is to find a suitable convex embedding of
this polytope as a hyperplane arrangement in CP 2, which is
rendered possible due to the generic form of the polytopal
realization reviewed in [37]. The hyperplanes for an accor-
diohedron are obtained by comparing the diagonals labeling
the facets with the reference dissection. Starting with the facet
(13), we have to compare it to the reference dissection (see
Fig. 2).

We see from Fig. 2 that the dissection (13) intersects the
reference (13) and forms an inverted Z (see Fig. 1 of [38]) and
does not intersect (46) at all. Using the rules reviewed in [37],
we can write the facet (13) (denoted by f1) as

(xê13 + yê46) · (ê13 + 0ê46) � 1 ⇒ x � 1. (1)

Here we have used a basis for CP 2 with basis vectors ê13

and ê46. In addition, x and y are the respective values of the
inhomogeneous coordinates. Using the same rules, we can
now write the facets (46), (35), and (26) (denoted by f2, f3,
and f4) as

y � 1, y � −1, x � −1. (2)

Clearly, these hyperplanes bound a square. Now we can shift
our interest to the configuration space which is the reference
manifold with four hyperplanes above and at infinity removed,
i.e., X = CP 2 − ⋃4

i=1 fi.2 On this space X, we define the twist

ω(13,46) = (
X13 − m2

13

)
d ln(x−1)+(

X26 − m2
26

)
d ln(x+1)

+ (
X46 − m2

46

)
d ln(y − 1)

+ (
X35 − m2

35

)
d ln(y + 1). (3)

1We use the notation for dissections set up in [12]. For example,
(13,46) means that a hexagon is dissected by drawing a diagonal
between vertices 1 and 3 and a diagonal between 4 and 6.

2We have not explicitly indicated the hyperplane at infinity, which
is formally present. The residue at infinity can be computed by a sim-
ple change of variables. It does not however affect our computation
of the intersection number.

FIG. 2. Comparison of the dissection (13) (denoted by the
dashed line) with the reference (13,46) (denoted by red solid lines).

We have used the standard notation to describe generalized
Mandelstam variables, i.e., Xi j is equal to (pi + pi+1 + · · · +
p j−1)2. These can be visualized as chords of an n-gon for
an n-particle scattering process. Consequently, the dissection
(13,46) will translate into the diagram having poles as X13

and X46 go on-shell. It can be seen from this picture that
there are n(n−1)

2 − n such variables, which is precisely the
dimensionality of the space of Mandelstam variables for an
n-particle process.

Let us also note the meaning of the notation m2
i j . For

purposes of maximal generality, we assume that each channel
of the scattering process has a different massive pole. Here
m2

i j is the squared mass of the particle propagating along the
channel (i j). Now, for the case of a theory with a single kind
of particle, all the m2

i j will be equal to m2, where m2 is the
mass of the particle. Since we can work out the intersection
theory for arbitrary masses, we note that this formalism can be
applied for amplitudes such as those in thermal field theories
as well, where the m2

i j can be identified with Matsubara
frequencies. Thus, we can deal with a fairly wide class of
theories using this framework.

With this laid out, we can compute the contribution to the
scattering amplitude from this polytope by computing the self-
intersection number of the form

ϕ(13,46) = d ln f1 ∧ d ln f2 + d ln f2 ∧ d ln f3

+ d ln f3 ∧ d ln f4 + d ln f4 ∧ d ln f1. (4)

This can be seen from the formula for intersection numbers,
which was first used in the context of scattering amplitudes
in [2]. In our case, we are interested in the self-intersection
number of ϕ(13,46), for which it is sufficient to note that
the intersection number is localized on the vertices of the
accordiohedron. Schematically, for a given accordiohedron
of dimension n, if the vertices are labeled by VI , the self-
intersection number of the corresponding form would be given
by

∑
f1∩···∩ fn=VI

1

α1 · · · αn
, (5)
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FIG. 3. Accordiohedron for the dissection (13,14) embedded in
CP 2.

where αi is the weight attached to fi. In our case, an applica-
tion of this formula to ϕ(13,46) gives

〈ϕ(13,46), ϕ(13,46)〉

= 1

X13 − m2
13

1

X46 − m2
46

+ 1

X46 − m2
46

1

X35 − m2
35

× 1

X35 − m2
35

1

X26 − m2
26

+ 1

X26 − m2
26

1

X13 − m2
13

.

(6)

A similar approach can be taken for the pentagon
arising from the six-particle amplitude in this theory
shown in Fig. 3. We will focus on the reference dis-
section (13,14), which gives rise to a pentagon. The ac-
cordiohedron of this reference is labeled by the vertices
{(13, 14), (24, 14), (24, 26), (26, 36), (13, 36)}. The facets
may be read off from the set of vertices; they are
{(13), (36), (26), (24), (14)}. Using the rules for finding the
embedding, we have the facets (denoted by f1 · · · f5)

x � 1, −y � 1, −x � 2, −x + y � 2, y � 2. (7)

These constraints give rise to the shaded convex polygon in
Fig. 3. The kinematical data associated with the amplitude is
carried by the twist, which we choose as

ω(13,14) = (
X13 − m2

13

)
d ln(x−1) + (

X14 − m2
14

)
d ln(y−2)

+ (
X24 − m2

24

)
d ln(−x + y − 2)

+ (
X26 − m2

26

)
d ln(x + 2)

+ (
X36 − m2

36

)
d ln(y + 1). (8)

Using the assignments for the fi as defined by Fig. 3, we
compute the self-intersection number of the form

ϕ(13,14) = d ln f1 ∧ d ln f2 + d ln f2 ∧ d ln f3

+ d ln f3 ∧ d ln f4 + d ln f4 ∧ d ln f5

+ d ln f5 ∧ d ln f1 (9)

to compute the amplitude, which becomes

〈ϕ(13,14), ϕ(13,14)〉

= 1

X13 − m2
13

1

X36 − m2
36

+ 1

X36 − m2
36

1

X26 − m2
26

+ 1

X26 − m2
26

1

X24 − m2
24

+ 1

X24 − m2
24

1

X14 − m2
14

+ 1

X14 − m2
14

1

X13 − m2
13

. (10)

We have indicated that the twist and form are defined for the
particular accordiohedron in question by using the subscript
(13,46) to denote the reference dissection.

These calculations show that arbitrary mass choices can
be made perfectly consistent in the polytopes formalism,
even though this aspect is not manifest in the conventional
embedding in the kinematical space. It is then obvious that the
natural arena for massive scalar theories is twisted intersection
theory with a careful convex realization of accordiohedra,
which allows us to study scalar theories with arbitrary masses.

We note here that for theories in which a number of mas-
sive states can be exchanged in the Mandelstam channels, the
amplitude will be given over a sum of intersection numbers;
no single intersection number can give all the amplitudes
summed over. The two index masses simply provide a general
scheme to consider any massive pole structure.

III. INCORPORATING LOOP EFFECTS

A proper discussion including loops while considering
scattering amplitudes from the positive geometry viewpoint
has been met with some hurdles. For one thing, it has been
difficult to make swift progress beyond one-loop Feynman di-
agrams, due to the technical difficulties in dealing with moduli
spaces of genus 2 surfaces. To be precise, these surfaces are
not known to be tiled by any regular polytope, making the
analysis somewhat tricky. Some progress has been reported at
genus 1, for which the reader can consult [13,14,39].

In addition to the general technical issue of looking at
moduli spaces, there is a more mundane issue with including
loop interactions. Generically, the integrands appearing in
Feynman loop diagrams come with symmetry factors, which
encode various degeneracies arising from the large number of
ways in which contractions can be performed.

For these reasons, it may be more efficient to look at
specific classes of Feynman diagrams depending on the nature
of renormalization and see if these classes can be described in
the polytope framework. To be more concrete, let us consider
the case of four-particle scattering (in the planar limit) in φ4

theory. Here we receive contributions from two classes of
diagrams, namely, from diagrams which cause mass renor-
malization and from diagrams giving rise to coupling constant
renormalization.

In order to recast these as intersection numbers, we follow
the algorithm that we will now describe. In the field theory
limit, which is what we are interested in for the time being,
loop interactions are encoded by the complete nodal degener-
ation of the moduli space Mg,n, which is M0,n+2g. Given the
2g auxiliary insertions, denoted by σ±,i, with i running from
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FIG. 4. Propagator corrections in the φ4 theory at the one-loop
level.

1 through g, each pair can be sandwiched between a pair of
the original insertions as shown in Fig. 4. All possible ways
of doing this constitute the tiling of the moduli space.

Let us specialize to the case of the four-particle scatter-
ing described earlier. Specifically, let the auxiliary points be
placed between particles 1 and 2. Furthermore, these two
insertions are associated with momenta � and −�. If we now
look at only the terms giving rise to mass renormalization, we
have two diagrams as shown in Fig. 4. These two diagrams
are obtained from the dissections (12) and (+3). Here (+3)
indicates a diagonal between the vertex σ+ and 3. Using
these dissections, the technology of accordiohedra and inter-
section theory may be applied to obtain the stripped integrand,
namely, the integrand with the loop momentum stripped.

We first find the accordiohedra for the two dissections.
For (12), the only compatible dissection is itself. This gives
an open accordiohedron, in which the second boundary is
pushed to infinity. However, for (+3), the accordiohedron is
{(12), (+3)}. Thus, the weights are 0 and 1, respectively. We
can realize this as CP 1 − {0, 1,∞} with the twist

ω(+3) = (
p2

1 − m2
)
d ln(x)

+ (
p2

2 − μ2)d ln(x − 1), (11)

where m and μ are the masses of virtual particles flowing
through the respective channels and the hyperplane at infin-
ity has been indicated. Now the self-intersection number of
ϕ(+3) = d ln( x

x−1 ) gives

1

p2
1 − m2

+ 1

p2
2 − μ2

. (12)

If the loop momentum is introduced, we get

1

�2

(
1

p2
1 − m2

+ 1

p2
2 − μ2

)
, (13)

which is the correct loop integrand. Indeed, this can be
absorbed as a renormalization of mass after all channels are
taken into account. For this of course we have to analytically
continue past the mass shell, which the intersection theory
does not preclude.

Extending this to loop levels higher than one has a tech-
nical issue, namely, the fact that stripping away all the loop
momenta as

∏
i

1
�2

i
is not generically possible, due in large

part to the fact that Riemann surfaces of genus greater than 2
can degenerate in very complicated ways to give rise to nodal
Riemann spheres. The extension of the results obtained here
to higher loop order remains an interesting open problem.

IV. GENERIC INTERACTIONS

In this section we briefly describe how the procedure
developed above may be applied to generic theories. Let us
first note that the main object of importance is the so-called
accordiohedron, constructed out of a given set of dissections,
which label a particular scattering process. Most importantly,
these scattering processes can be arbitrarily complicated, so
long as the dissections are properly classified and treated
appropriately.

Consider, for example, the rather complicated kinds of
polytopes considered in [16], in which the accordiohedra
for arbitrary φp interactions were obtained. Here dissections
of p + n(p − 2)-gons into p-gons label the collection of all
planar Feynman diagrams in an n-particle scattering process.
Accordingly, the collection of these dissections may be used
to obtain the corresponding accordiohedra, which may then
be realized as convex polytopes using the methods used here,
which were reviewed in [37].

At the same time, we must also bear in mind that there is a
practical hurdle to all of this. Leaving aside the computation-
ally intensive aspect, we also recall that accordiohedra are not
generically unique, and a number of distinct accordiohedra
usually need to be appropriately weighted and resummed in
order to obtain the final amplitude. In our case, this will entail
appropriately weighting the corresponding twisted intersec-
tion numbers.

From this discussion, the takeaway is simply that the
formalism itself can be applied rather straightforwardly, even
if cumbersome, such that the real roadblock is to ensure
that a self-consistent collection of weights can be obtained.
Indeed, determining whether or not these weights can be
found consistently was an important aspect considered during
the work that led to [17], with some very decent progress
also discussed in [16]. In all the cases considered so far,
the weights can be determined consistently. Furthermore, in
[17] it was found that there are at most as many equations
determining the weights as there are weights, consequently
implying that at least one self-consistent solution may be
found.

To conclude this section, we remark that the previous
points indicate that the procedure outlined in this paper can
be carried out for arbitrarily complicated interactions, which,
although technically challenging at higher points, will always
be possible in principle.

V. DISCUSSION

In this paper we have developed a framework to handle
interactions among scalars in the planar limit which may be
arbitrarily complicated from the point of view of twisted inter-
section theory. Furthermore, we have noted that the formalism
presented circumvents some of the rules that are placed on
more traditional amplituhedron methods, chief among which
is the restriction to massless particles. The convex embedding

033119-4



POSITIVE GEOMETRIES FOR ALL SCALAR THEORIES … PHYSICAL REVIEW RESEARCH 2, 033119 (2020)

allows for arbitrary choices of mass as well as moving off
the mass shell. Among other things, this allows us to treat
tadpoles and bubble diagrams with relative ease. Furthermore,
we have been able to bring loop amplitudes, at least up to the
one-loop level, into the discussion as well while taking care of
symmetry factors.

It seems that there are some aspects of this work which
can be easily extended. First, in order to keep track of
symmetry factors at the loop level, we have by hand been
restricted to specific subsets of dissections giving rise to loop
diagrams according to the nature of renormalization (e.g.,
mass renormalization and coupling constant renormalization
in φ4 are treated separately). It remains to be seen whether the
symmetry factors and all loop diagrams can be consistently
reconciled with one another in the polytopes picture. This
seems unlikely, but will surely constitute an interesting future
investigation.

Second, it may be interesting to extend our analysis past
the realm of scalar theories into richer domains, such as

effective field theories (EFTs). Historically, the Cachazo-He-
Yuan formalism has provided ample insight into EFTs which
can be obtained by dimensional reduction of gravity and
Yang-Mills theory. Now the technology developed here to
understand more generic vertices might give us room to look
at more exotic EFTs. This is a long-term goal that we hope to
pursue in the future.
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