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Introduction to tensor RG (renormalization group)

Applications to (classical) Ising model with magnetic field, 2d O(2) model. Then
move to 3d!

Another facet of tensors: Real-time evolution in Ising Field Theory (IFT) using
Matrix Product States (MPS) of (Qquantum) Ising model.

Moving to quantum computing: Qubits (d = 2 Hilbert space), Qumodes
(continuous variables [CV], infinite dimensional HS)

Application of qubit method to understand O(3) model recently by other groups
and our ongoing work on CV formulation.



Different RG methods

Various renormalization group (RG) schemes (list not exhaustive) have been introduced over
the past 5-6 decades:

» Kadanoff’s spin blocking RG [1966] & Wilson’s RG [1975]

* Density Matrix Renormalization Group (DMRG) [White, 1992]

(DMRG is an extension to Wilson RG and is well-suited to all 1d systems not only restricted to impurity problems)

* Tensor Renormalization Group [Levin and Nave, 2007] + HOTRG [Xie et al., 2012]

* Tensor Network Renormalization (TNR) [Vidal et al., 201 5]

Figure: Quanta Magazine



But why tensors?

* Provides an arena to study lower-dimensional (critical and gapped) systems faster
than any other known method available today! [2d classical Ising model in 15 seconds
on a laptop]

 Formulation in terms of tensors can help us study models where the usual Monte

Carlo (MC) methods fail (such as finite-density, 6-term). In addition, the thermodynamic
limit can be approached faster and partition function can be computed unlike MC.

* Description of a quantum state in terms of tensors (MPS) can be useful to study real-
time dynamics

* Known to play a key role in emergence of space-time [understanding holography]



Formulation of tensors

Tensor methods have both Lagrangian and Hamiltonian applications.

. State approach: We can approximate the ground state i.e., |y) = 2 C .

model with local Hamiltonian of NV spins in fewer coefficients than N O(N).
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 Action approach: We approximate the partition function using tensor networks
considering decomposition of Boltzmann weight (truncate if necessary) and then coarse-
graining by performing successive iterations.
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This talk [TRG]!

For this talk we will restrict to the application of tensor networks when dealing with
statistical systems in Euclidean dimensions. This amounts to evaluating Z to best possible
accuracy. This problem usually belongs to NP (non-polynomial) complexity class! We will
start with an initial network and then perform coarse-graining to approach the correct target
theory with best approximation. For example, the schematic representation of TRG can be

shown as:
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Improved TRG

In its crude form as developed by Levin and Nave in 2007, this method cannot deal with
higher dimensional systems. For that, after about five years, HOTRG [higher-order] TRG was
developed based on higher-order SVD (HOSVD) to reduce the errors due to truncation. First
introduced in arXiv: 1201.1144 and has been successfully applied to statistical systems in

d=34.

Coarse-graining renormalization by higher-order singular value decomposition
Z.Y. Xie, J. Chen, M. P. Qin, J. W. Zhu, L. P. Yang, T. Xiang

We propose a novel coarse graining tensor renormalization group method based on the higher-order singular value decomposition. This method
provides an accurate but low computational cost technique for studying both classical and quantum lattice models in two- or three-dimensions.
We have demonstrated this method using the Ising model on the square and cubic lattices. By keeping up to 16 bond basis states, we obtain by
far the most accurate numerical renormalization group results for the 3D Ising model. We have also applied the method to study the ground state
as well as finite temperature properties for the two-dimensional quantum transverse Ising model and obtain the results which are consistent with

published data.



Simple demonstration

We have motivated this idea of TRG but it is best if we apply it to some simple system with
known solution. Ising model is the perfect playground for this! The exact solution is given by

[Onsager, 1944] with critical inverse temperature f ~ 0.440687

1
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15 seconds on modern laptop!
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Ising with magnetic field

But, if we introduce magnetic field, the model becomes unsolvable. It is an outstanding
open problem for more close to 80 years! Some cases for imaginary magnetic field values

are solvable due to Yang-Lee [1952] and Merlini [1974] but for general real /1, not much is
known on a regular lattice. For random graph, it was solved by Kazakov and Boulatov in

1986 by a map to Hermitian two-matrix model. If we define z = e‘zﬂh, then Onsager case is
z = 1 while Merlini solution is for z = — 1
52 7z 1 O el . 19 . 12 cos(¢; + ¢,) — cos(¢; — ¢,)
f(ﬂ,ﬁ) =-i ﬁ(an +—— L L In [smh (2,8)(1 + sinh?(2f) + : )]d¢1d¢2 .

On the solution of the two-dimensional ising model with
an imaginary magnetic field PH=h=1n/2
D. Merlini &

Lettere al Nuovo Cimento (1971-1985) 9, 100-104 (1974) | Cite this article
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Classical Ising with magnetic field - Numeric
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O( 2 } model RGJ, arXiv: 2004.06314

We can study the simplest spin model with continuous O(2) global symmetry using these

methods. It was studied first in 2013 by Yu et al. [1309.4963] and by Vanderstraeten et al.

[1907.04576]. We revisit this work and improved the results by few digits of precision for
determination of the BKT phase transition. The Hamiltonian is given by:

H = _JZ cos(6; — 0) —hz cos 0,
i) i

In order to construct the tensor representation, we decompose the Boltzmann weight using
Jacobi-Anger expansion and integrate over @-variables:

cXp (ﬂ COS(Hi — 91)) = ]0( p) + i Iy( p) ¢ V(0=0))

v=—00,7#0

Tyt =\ HOBBP i PP
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O( 2 ) model RGJ, arXiv: 2004.06314

The o-function for & = 0 ensures the conservation of U(1) charges. This model has a famous

BKT transition corresponding to unbinding of vortex pairs. Note that in two dimensions,
continuous symmetry cannot break due to the famous Mermin-Wagner -Hohenberg-Coleman
theorem and hence one might expect no phase transition but the BKT transition is special
case. The transition is from a quasi-long range ordered (QLRO) to a disordered phase. At
some temperature, all the vortices and anti-vortices are free to move, which destroys the
correlations between distant spins and breaks QLRO. It was the first example of a topological
phase transition. It is of infinite order in Ehrenfest classification sense - “none of the derivatives
of free energy is discontinuous”.
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RGJ, arXiv: 2004.06314
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Results - O(2) model RGJ, arXiv: 2004.06314
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Moving to higher dimensions

Though tensor methods works very well for lower-dimensional systems, it was not explored
much for d > 3 because of several problems involved (computer time which scales like
O(D4d_1), memory requirements, effects of truncation etc.).

T / 7> ;
) = N = QD
. WM{_ =0, < O @ 9 > > Uy
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Triad method

In 2019, it was found that it is often faster to deal with not the rank-six tensor in 3d directly, but
decompose it in terms of several rank-three tensor known as triads. This reduces the cost
drastically and we can study some statistical systems which were more difficult before.

1y,
lrudfb Al ba B adk C'/{-"LL”)’D Yfr
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Basic step In Trliad TRG
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Status of 3d spin systems [w tensors]

Apart from Ising model on cubic lattice, not much had been done for Potts model or even the
O(2) model.

* Ising model studied but critical exponents not yet computed!
- g-state Potts model in the large ¢ limit [RGJ, arXiv: 2201.01789]

+ J(2) model at finite number density [First study: RGJ, Bloch, Lohmayer, Meister, arXiv:
2105.08066]
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IFT

Real-time scattering in Ising field theor
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Figure Credits: Ashley Milsted, Dominik Neuenfeld
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MPS approach to scattering in IFT

With tensor network methods, we can approximate the ground state of quantum Ising

N
chain with local Hamiltonian H = — 2 Z/Z. | — hZ + gX; where we take the double
i=1
scaling limit 7 — 0, g — 1 (corresponding to critical temp in 2d classical case). If we
define 7 = T/T- — 1, then the RG parameter n = /| h \8/15 determines the behaviour of

the model. Zamolodchikov found that the model is integrable for 7 = 0 and he computed

the mass spectrum which consists of eight particles (three below the threshold of 2m) and
five owing their stability to integrability. This model also has another integrable limit of

n — oo for all 7. We first start with a random MPS and through imaginary-time evolution,
find the ground state of the H given above.

22
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Stab|e EartiC|eS in h — T E|ane in progress, Milsted et al.

Q # of stable particles

Figure Credits: G. Delfino
Delfino, Mussardo et al, arXiv: hep-th/0507133
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Spectrum at £ point

Mo = 2 COS =M, ~ 1.618m,
ms = 2 COS lml ~ 1.989m;
My = 2COS - cos —m1 ~ 2.405m;

Ms = 4(:03%(:03 m; =~ 2.956m;

me = 4C0S < COS5my =~ 3.218m,
m; = 8(cos T)? cos om; ~ 3.891m,

mg = 8(cos = )° COS —m1 ~ 4.783m;

Zamolodchikov's solution 1s the most complicated integrable model known 1n Physics™ — Subir Sachdev

24



Spectrum close to £ point

All stable particles have very specific dependence on /& and we checked this using MPS

calculations. One can also compute 7, and #; i.e., where the particle 2 and particle 3
becomes unstable. The dataisat T = Tc.

5 —— 9 —




Real-time evolution and scattering

Once we have created a MPS [does not always work!] which is faithful representation of
the ground state of quantum spin chain, we construct excitations on top [quasi particles]
and then evolve them in real-time using TDVP methods [time-dependent variational
principle]. TDVP is a very popular alternative to Trotterization with several advantages and
was introduced in the seminal paper:

Time-Dependent Variational Principle for Quantum Lattices

Jutho Haegeman, J. Ignacio Cirac, Tobias J. Osborne, Iztok Pizorn, Henri Verschelde, and Frank Verstraete
Phys. Rev. Lett. 107, 070601 — Published 10 August 2011

Article References Citing Articles (346) ﬂ HTML

History: Dirac-Frenkel-McLachlan in 1930s
26



Open guestions!

- We know that |S| =1 at two integrable points. However, we do not know how it behaves

(interpolates) between these two limits. We can compute these close to the integrable points by
doing form-factor perturbation theory (known as FFPT) but general regime needs support from

numerical results. We know that close to FF, Py =1 — P, 4 = 0 till £=3m, and P4 > 0

for £ > 3m. We see this in our results and also the agreement to FFPT.

» What is the high-energy behaviour between this integrable points. There is a conjecture that
Py=1-P,, 20ask — coclosetoFFand P|; =1 - P,y — 1as E — oo close to E8
with a transition between. We see some signs for this behaviour. There are other major

‘complex’ issues close to E8 (resonance etc.).

Note that in d =2, we can have scattering without particle production (elastic) but it is

prohibited in d > 2 by Aks theorem [S. Aks, “Proof that scattering implies production in
quantum field theory,” Journal of Mathematical Physics (1965), 516-532.]
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1981: Feynman gives a seminar at MIT in the summer and observes that it is impossible to

simulate an evolution of a quantum system on a classical computer in an efficient way. He

proposes a basic model for a quantum computer that would be capable of such simulations.
Around the same time Toffoli introduces the reversible doubly-controlled quantum NOT gate.

J

A

1980: Manin publishes his paper (in Russian) and proposes the idea of
quantum computer for the first time. See text and references for detail.

A

1976: Polish physicist Ingarden shows that Shannon information theory can-
not be directly generalized to the quantum case because in the usual quan-
tum mechanics of closed systems there is no general concept of joint and con-
ditional probability. He showed, however, that it is possible to construct a
quantum information theory which is a generalization of Shannon’s theory.

A

1975: Poplavskii publishes ‘Thermodynamical models of informa-
tion processing’ (in Russian) and shows the impractical computa-
tional nature of simulating quantum systems on classical computers.

A

1973: Holevo publishes paper showing that n qubits cannot carry more
than n classical bits of information. This was a surprising result. Around
same time, Bennett showed that computation can be done reversibly.

A

1969/1970: Wiesner discusses with Bennett his idea on conjugate coding which
he argued can be used for printing bank notes (quantum money) that would be
impossible to counterfeit. The exact date of the idea is not known since the pub-
lished version is much later in 1983. Wiesner tried to publish it earlier by sub-
mitting to the IEEE Transactions on Information Theory, but, it was rejected.

Quantum computers

1986

Quantum Mechanical Computers

By Richard P. Feynman

Introduction

his work is a part of an effort to
I analyze the physical limitations
of computers due to the laws of
physics. For example, Bennett' has
made a careful study of the free energy
dissipation that must accompany com-
putation. He found it to be virtually
zero. He suggested to me the question
of the limitations due to quantum me-
chanics and the uncertainty principle. 1
have found that, aside from the obvious
limitation to size if the working parts
are to be made of atoms, there is no
fundamental limit from these sources
either.

We are here considering ideal ma-
chines; the effects of small imperfec-
tions will be considered later. This study
is one of principle; our aim is to exhibit
some Hamiltonian for a system which
could serve as a computer. We are not
concerned with whether we have the
most efficient system, nor how we
could best implement it.

Since the laws of quantum physics
are reversible in time, we shall have to
consider computing engines which
obey such reversible laws. This prob-
lem already occurred to Bennett', and
to Fredkin and Toffoli2, and a great deal
of thought has been given to it. Since it
may not be familiar to you here, I shall
review this, and in doing so, take the
opportunity to review, very briefly, the
conclusions of Bennett?, for we shall
confirm them all when we analyze our
quantum systen.

It is a result of computer science that
a universal computer can be made by a
suitably complex network of intercon-
nected primitive elements. Following
the usual classical analysis we can imag-
ine the interconnections to be ideal
wires carrying one of two standard volt-
ages representing the local 1 and 0. We
can take the primitive elements to be
just two, NOT and AND (actually just
the one element NAND = NOT AND
suffices, for if one input is set at 1 the
output is the NOT of the other input).
They are symbolized in Fig. 1, with the
logical values resulting on the outgoing
wires, resulting from different com-
binations of input wires.

From a logical point of view, we must
consider the wires in detail, for in other
systems, and our quantum system in
particular, we may not have wires as

OPTICS NEWS

such. We see we really have two more
logical primitives, FAN OUT when two
wires are connected to one, and EX-
CHANGE, when wires are crossed. In
the usual computer the NOT and NAND
primitives are implemented by transis-
tors, possibly as in Fig. 2.

What is the minimum free energy that
must be expended to operate an ideal
computer made of such primitives?
Since, for example, when the AND op-
erates the output line, ¢”is being deter-
mined to be one of two values no matter
what it was before the entropy change is
In(2) units. This represents a heat gen-
eration of kT In(2) at temperature 7. For
many years it was thought that this rep-
resented an absolute minimum to the
quantity of heat per primitive step that
had to be dissipated in making a cal-
culation. .

The question is academic at this time.
In actual machines we are quite con-
cerned with the heat dissipation ques-
tion, but the transistor system used ac-
tually dissipates about 10'°%kT! As
Bennett® has pointed out, this arises
because to change a wire’s voltage we
dump it to ground through a resistance;
and to build it up again we feed charge,
again through a resistance, to the wire.
It could be greatly reduced if energy

Richard P. Feynman is a profes-
sor of theoretical physics at Cali-
fornia Institute of Technology.
This article is based on his ple-
nary talk presented at the CLEO/
IQEC Meeting in 1984.

February

could be stored in an inductance, or
other reactive element.

However, it is apparently very dithi-
cult to make inductive elements on sili-
con wafers with present techniques.
Even Nature, in her DNA copying ma-
chine, dissipates about 100 k7 per bit
copied. Being, at present, so very far
from this kT In(2) figure, it seems ridic-
ulous to argue that even this is too high
and the minimum is really essentially
zero. But, we are going (o be even more
ridiculous later and consider bits writ-
ten on one atom instead of the present
10'" atoms. Such nonsense is very en-
tertaining to professors like me. I hope
you will find it interesting and enter-
taining also.

What Bennett pointed out was that
this former limit was wrong because it
is not necessary to use irreversible
primitives. Calculations can be done
with reversible machines containing
only reversible primitives. If this is done
the minimum free energy required is
independent of the complexity or num-
ber of logical steps in the calculation. If
anything, it is kT per bit of the output
answer.

But even this, which might be consid-
ered the free energy needed to clear the
computer for further use, might also be
considered as part of what you are go-
ing to do with the answer—the informa-
tion in the result if you transmit it to
another point. This is a limit only
achieved ideally if you compute with a
reversible computer at infinitesimal
speed.

Computation with a
reversible machine

We will now describe three reversible
primitives that could be used to make a
universal machine (Toffoli?*). The first is
the NOT which evidently loses no in-
formation, and is reversible, being re-
versed by acting again with NOT. Be-
cause the conventional symbol is not
symmetrical we shall use an X on the
wire instead (see Fig. 3a).

Next is what we shall call the CON-
TROLLED NOT (see Fig. 3b). There are
two entering lines, a and b and two
exiting lines, a”and b’ The a”is always
the same as a, which is the control line.
If the control is activated a = 1 then the
out b’ is the NOT of b. Otherwise b is
unchanged, b= b. The table of values

11



Quantum computing : Approaches

* Digital quantum computing: Use qubits to perform computations. There
are three steps in general: 1) Initial state-preparation, 2) Implementing unitary
evolution using quantum gates, 3) Measurements.

 Analog quantum computing (continuous/bosonic): Use of continuous
variables (local Hilbert space is strictly infinite-dimensional like say harmonic
oscillator) to carry out state preparation, time evolution, and measurements




States

e Qubits:d =2, |[0),|1)

e Qudits:d > 2, say |y) =al|0)+p|1)+7y]|2)

e Qumodes:d = o0 QHO




Quantum gates
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Classical vs. Quantum

A|[B[AND (A-B) | OR (A+ B) | XOR(A @ B) A) | |B) | |[A) | |[A® B)
0|0 0 0 0 0) | |0) | |O) 0)
0|1 0 1 1 ()> 1> O> 1>
0 0 1 1 1y |10y | 1) 1)
1|1 1 1 0 BT T o
CNOT gate.
(D X

(D—o X o

Modern notation of CNOT Old notation used by Feynman




What do we want to do?

« One of the problems where theoretical physicists would like to apply these techniques is to
understand the time-evolution of some complicated quantum many-body system. Suppose, we

have spin-1/2 particle each on two sites with some H below, we would need two qubits to initialise
the state say, | 00). Now suppose the 4x4 Hamiltonian of this two-site model is given by:

H=X®X)+(Y®Y)

We want to do time evolution of this system i.e., exp(—iHt). We have to represent this unitary
operator with quantum (unitary) gates. Note that we have to keep df sufficiently small, so we have to

repeat the circuit below N times where N = t/dt. As we can see, we need about 8NN unitary gates
for this simple Hamiltonian and two sites! This cost is very important for practical computations.

o H—e—R,(—a)—e—H|—*

AR
1/

R, ()

N
N>

4
1/
A
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QC with continuous variables

* For fermionic systems, like Ising model, the qubit approach is generally preferred but for models with bosonic
degrees of freedom (where the local Hilbert space dimension is infinite), the more natural setting is one of

oscillator (qumodes). Suppose, we consider the famous Bose-Hubbard model where the H is given by:

H=JY, . a

where we have used create /annihilation operators and the number operators. The first term denotes the
hopping of bosons between neighbouring sites and second term is the on-site potential term.

We can write the time-evolution operator as:

1N

et = | BS (0,¢) (KIOR(-r) ® KOR(-n)| + 6 (2IN)

0=—Jt/IN,¢ =rnl2, r=— Ut/2N

where BS is the beam-splitter gate, K is the Kerr gate, and R is the rotation gate. These gates are qumodes
equivalent of the gates we saw before. For example, K(x) = exp(ixi®).



QC with continuous variables

* One step of time evolution (remember we need to do /N steps) is shown below:



Summary

Tensor network methods have potential to assist in various interesting problems
in Physics. On one hand, it can efficiently reproduce the ground state of several
quantum systems with MPS while on the other hand it can also describe real-
space RG in various dimensions and can help us in understanding spin models,
complex action systems, gauge theories etc. It Is Indeed a very exciting
approach to numerical aspect of RG!

Looking quantum mechanically, these models and several others can be
(hopefully) studied in future using qubits and qumodes much more efficiently.
This would tell us much more about the time evolution of quantum systems
which Is a hard problem.
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Randomized SVD

Monte-Carlo SVD . L
via random projections
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Randomised SVD
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