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Outline

• Holography for matrix QM and generic Yang-Mills (YM) theories including 
AdS/CFT conjecture (circa 1998) 


• Lattice studies (Wilson, 1974) of  strongly coupled YM theories and applications 
for holography, dynamical supersymmetry (SUSY) breaking.   
 
                                                 New for old    


• Tensor network approach to quantum many body systems and its relation to 
holography and entanglement (circa 2010) 


• Applications of  this new numerical approach to study Ising model,  models 
in  &  and some lattice gauge theories such as  and  in lower 
dimensions. 
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OLD FOR NEW
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Holography 
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The idea that a quantum-gravitational theory in one higher dimension 
( ) is related to some quantum field theory (without gravity) in one 
lower dimension ( ) on its boundary.  
 
It is expected that the theory of  quantum gravity will admit a 
holographic description. 


First hints came in 1970s, when Stephen Hawking and  Jacob 
Bekenstein  found that the black hole entropy was proportional to the 
area of  its event horizon. 


d + 1
d

SBH =
kBc3A
4Gℏ

https://en.wikipedia.org/wiki/Stephen_Hawking
https://en.wikipedia.org/wiki/Jacob_Bekenstein
https://en.wikipedia.org/wiki/Jacob_Bekenstein
https://en.wikipedia.org/wiki/Event_horizon


   Supersymmetry! 
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      It is elegant, beautiful, broken, and has not been seen until now. 



           AdS/CFT [Maldacena, 1997]
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There is a well-defined correspondence between a five-dimensional quantum 
theory of  gravity in Anti- de Sitter and four dimensional gauge theory on the 
boundary. In the limit of  , the quantum gravity theory is simple 
Einstein-like gravity in the bulk (low-energy string theory/supergravity [SUGRA]). 
       

N → ∞, λ ≫ 1



Not just !AdS5/CFT4
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But, there is nothing special about the basic idea of  holographic to 4/5 
dimensions. Within one year, it was rigorously defined for supersymmetric 
gauge theories for  < 4 even though they are not conformal. One of  the 
most studied cases is 


Maximally supersymmetric Yang-Mills theory in +1-dimensions also has 
holographic interpretation at low temperatures in a special limit (large , 
strong coupling) in the sense that the SUGRA solutions corresponding to 
these are black -brane solutions [Itzhaki, Maldacena et al.]  

d
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Supersymmetry (SUSY) on the lattice
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Beset by difficulties from the start because of  SUSY algebra. The algebra is an 
extension of  Poincare algebra by supercharges Q. Roughly,  and P 
generates infinitesimal translations which is broken on the lattice. SUSY algebra not 
satisfied at the classical level. 


Solution: 
 
Preserve a subset of  this algebra and hope that the supersymmetry is restored as 
continuum limit is taken. This idea has led to an improved understanding and has 
used for the results mentioned later in this talk. For review see: 0903.4881


[Cohen, Kaplan, Katz, Unsal, Catterall, Sugino]   orbifolding/topological twist  

{Q, Q} ∼ P

→



Possible SYMs on the lattice 
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Lattice  SYM𝒩 = 4
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This talk will present results based on the geometric construction and idea of  twisting 
a supersymmetric gauge theory. This generates the 0-form supercharges needed to 
preserve a subset of  SUSY algebra. In some sense, this is just a way of  rewriting 
original fields and is justified for flat Euclidean space studies. Supercharges are 
broken into -forms and then put on the lattice sites, links, plaquettes respectively.  


• To reduce the fine-tuning to minimum and to identify the twisted fields in a consistent 
manner, we cannot just work with hypercubic lattice. We need what is called  lattice. 
Four-dimensional analog of   triangular lattice shown. 


•   point group symmetry and five links which is very natural to lay out fields of  the 
 SYM theory. But, basis vectors are not orthogonal.

p

A*4
2d

S5

𝒩 = 4



Lower-dimensional SYM theories
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As nice as it sounds, on the lattice  SYM is extremely hard and not 
practical to study at large  and  using classical computers. Also, there is a 
sign problem which we have observed for . Additional complications 
because of  being a super conformal field theory with no scales, moduli etc.  
 
My research has focused over the years on the lower-dimensional version of  
this theory which are not conformal and the ’t Hooft coupling is dimensional 
and computational costs are under control. Also, sign problem does not seem 
to play a role for range of  couplings for interesting finite-temperature black 
hole Physics.  

𝒩 = 4
N λ

λ ≥ 5



Matrix Models
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Obtained by dimensional reduction of   SYM from ten dimensions down to 
one. The theory has  gauge symmetry and  internal symmetry group 
corresponding to nine scalars. Simplest holographic gauge theory with well-
defined gravity dual corresponding to Einstein’s gravity. 


                

 
                                                  


-terms break the . BFSS has a single deconfined phase 
but BMN model admits a phase transition to confined phase! 
 
BFSS := Banks-Fischler-Shenker-Susskind 
BMN := Berenstein-Maldacena-Nastase

𝒩 = 1
SU(N ) SO(9)

SBFSS =
N
4λ ∫ dtTr[(DtXi)2 −

1
2 [XI, XJ]2 + ΨTDtΨ + iΨTγ j[Ψ, Xj]]

SBMN = SBFSS + S(μ)

μ SO(9) → SO(6) ⊗ SO(3)



BMN matrix model [2003.01298, 2105. XXXXX]

14

 
SBMN = SBFSS −
N
4λ ∫ dτ Tr( μ2

32 (XI)2 +
μ2

62 (XM)2 +
2μ
3

ϵIJKXIXJXK +
μ
4

Ψα (γ123)αβ
Ψβ)

The flat directions of  the BFSS model are lifted by giving masses to SO(3) 
and SO(6) scalars. In addition, there is a cubic scalar term which is also 
known as ‘Myers term’ plus a fermion term. Dual gravity solution applicable 
when  with . g = λ/μ3 ≫ 1 μ ≪ 1,N → ∞

1411.5541  (Costa, Penedones, Greenspan, Santos) 



1+1-dimensional maximal SYM
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Dimensionally reduce the four-dimensional theory we have discretized on 
A4* lattice.  

• Dimensionless couplings, ,    and       


• Study the deconfinement phase transition dual to topological transition 
between different supergravity black hole solutions. Expected at 

 related to Gregory-Laflamme instability. 


• Different phases have different parametric dependence on coupling/
temperature.  
 
 

rx = λL rβ = λβ α = rx /rβ

α2rβ ∼ 2.45



Results from 1+1 SYM   [published in PRD, 2018] 
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2+1-dimensional SYM
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The three-dimensional SYM also has a holographic description at large N 
and strong coupling.  The weak coupling (high-temperature) thermodynamic 
behaviour is just expected to be  while the power-law behaviour of  the 
energy density is different at strong coupling. Contrast this with  SYM 
which always has  dependence. 


 
                          
 

It is worth noting that for SYM on an analogous torus in  -dimensions we 
would have parametric dependence  for  from the 
gravity dual, and the  limit would go as . In the 
conformal case these powers coincide 
 

∼ t3

𝒩 = 4
∼ T4

sBos
N2λ3

= − 0.831t10/3
sBos
N2λ3

= − 2.598…t3

p + 1
sBos ∝ t(14−2p)/(5−p) t ≪ 1

t ≫ 1 sBos ∝ tp+1 p = 3

increasing t = T/λ

t ∼ 1



Results   [published in PRD, 2020] 
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Localized phase (high T)
Uniform D2 phase. 



Results   [published in PRD, 2020] 
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We checked that high-  behaviour is reproduced by our lattice 
computations and that it agrees to supergravity results at low-
temperatures. 
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Minimal SUSY & phenomenology
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Holographic conjectures need maximal amount of  SUSY (extended theories) 
like   SYM in . However, this theory cannot accommodate fermions 
transferring in the fundamental representation of  the gauge group. We need 
to look beyond and to most notably  SYM in  which are arguably 
most important of  all SUSY in  from point of  view of  extensions of  SM. 


If  we dimensionally reduce this to two dimensions, we get  SYM. 
We studied this model few years back and looked for signals of  dynamical  
SUSY breaking.  
 

𝒩 = 4 4d

𝒩 = 1 4d
4d

𝒩 = (2,2)



Results [published in PRD, 2018] 
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Witten index ( ) can be useful (sometimes) to identify SUSY breaking defined as: 
. If   then SUSY is unbroken while if  , it may or may not be 

broken. But computing this directly using Monte Carlo simulations on the lattice is 
not possible since we can only compute expectation values. So, instead we looked 
at the vacuum energy in this model at finite temperatures and carefully took the 
zero temperature limit. We found that SUSY is unbroken in the continuum limit 
for . For this case, Hori & Tong in arXiv:0609032 had computed  
and possibility of  SUSY breaking was open. This is one example where lattice 
computation directly provided input to cross-check and improve continuum result.  
 
Also investigations by [Kanamori, Suzuki, Wipf  et al.] 

 

 
 

IW
Tr(−1)F IW ≠ 0 IW = 0

N = 2,3 IW = 0



 SYM with matter 𝒩 = (2,2)
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To study more interesting problems, one has to add matter (to make 
phenomenological connections) in fundamental/anti-fundamental 
representation of  the gauge group. This has been studied for two-
dimensional theory by several authors. The mass spectrum is interesting to 
study in the continuum limit. Once this is well-studied, the natural extension 
is to four-dimensional  SYM where it is possible to study without 
exploiting any exact techniques. This is because fine-tuning can be 
managed (only one relevant SUSY violating operator). This is work we want 
to pursue in the future in addition also 2d and 3d SQCD theories. However, 
we would need to use Ginsparg-Wilson fermions so that we maintain some 
discrete chiral symmetry on the lattice.  
 
 

𝒩 = 1
𝒬−



Looking ahead with SUSY! 
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• We want to study the Maldacena-Wilson loop and compare to 
holographic predictions. 


• A big problem is to understand the coupling-dependence of  free 
energy/entropy of   SYM at finite-temperatures using lattice! 


• Understand the static potential and anomalous dimensions of  
operators in  SYM. 

𝒩 = 4

𝒩 = 4
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Tensor Network 

25

Different renormalization group (RG) methods have been introduced over the past 5-6 
decades:


✦ Kadanoff ’s spin blocking RG [1966] & Wilson’s Numerical RG [1970s] 


✦ Density Matrix Renormalization Group (DMRG) [White, 1992]  
(DMRG is a refined extension to above approach and is well-suited to all 1d systems not only restricted to impurity problems such as 
Kondo problem.)


✦ Tensor Renormalization Group [Levin and Nave, 2007]  
(More efficient than DMRG but breaks down at criticality as former.)


✦ Tensor Network Renormalization (TNR) [Vidal and Evenbly, 2015]  
(TNR is an extension of  TRG which qualitatively improves TRG behaviour for systems at criticality and can be used to generate 
MERA tensor networks)



Motivations  
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• Formulating in terms of  tensors can enable us to study systems where the 
usual Monte Carlo (MC) methods fail (sign problem!). In addition, the 
partition function is directly accessible in the thermodynamic limit unlike MC 
methods.


• Provides an arena for studying lower-dimensional critical and gapped systems 
faster and more efficiently than any other numerical method available today. 


• Has recently been understood to play an important role in understanding the 
AdS/CFT (i.e. bulk physics from entangled quantum state at the boundary).   



Basic idea
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Tensor networks approach belong to two categories: Lagrangian and Hamiltonian 
approaches. For ex: 
 

 as approximation to the ground state wave function of  

complicated many-body quantum system with local Hamiltonian. Ex: Matrix Product 
States (MPS) representation. Reduction to  rather than O( ) coefficients.  
 
 

  to approximate in the Lagrangian formulation (like we consider in 

this talk later). 

|Ψ⟩ = ∑
i1,i2,⋯,iN

Ci1⋯iN | i1i2⋯iN⟩

O(N ) dN

Z = ∑
{Si}

e−βH({Si})



How to identify relevant states? 
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• Ground states are not “arbitrary” states in the Hilbert space, it has some 
special features. These have been captured by studying the entanglement 
entropy (EE). The region of  Hilbert space that obeys area-law scaling for the 
EE corresponds to a tiny corner (in red). Therefore, lot of  progress have been 
made in many-body physics by computing EE and hence identifying 
important regions of  Hilbert space.  

          Hilbert space - too big!

11

if N=  (Avogadro Number), then number of basis states is more 
than atoms in universe! Luckily for us, not all quantum states are 
important! How to find nice ones is a big and interesting problem. 

1023

N
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  TTN/MERA 
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MERA 
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What does MERA capture?
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• Swingle (0905.1317) — MERA describes a time slice of  the Poincare patch of  , which 
corresponds to the hyperbolic plane. So, MERA is the lattice realisation of  AdS/CFT! (* Hint 
from Ryu-Takayanagi (RT) formula matching EE*) 

• Beny and others (1110.4872) — MERA on the real line should be interpreted instead as a 
Poincare patch of  dS spacetime


• Vidal & Milsted (1812.00529) argued that MERA on the real line would describe light sheet 

geometry.  
 

AdS3



HOTRG (Higher-order TRG) 
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A refined real space coarse graining method similar in spirit to TRG but employs 
higher-order SVD (HOSVD) to minimise the errors due to truncation. First 
introduced in 1201.1144 and is successfully applied to statistical systems in various . 
Performs better than naive TRG for critical systems. Less complex than the TNR 
methods (best for critical systems!) 


d



Example - 2d Ising [Square lattice] 
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Exactly solvable system with solution due to Onsager, where the logarithm of  
the partition function is given by: 


And has singularity (phase transition) at: 


We apply HOTRG to this system and match to known analytical results as a 
check to show its effectiveness. 

f(�) = � 1

�

 
ln(2) +

1

8⇡2

Z 2⇡

0

Z 2⇡

0
ln
h
2 cosh2(2�)� sinh(2�) cos(�1)� sinh(2�) cos(�2)

i
d�1d�2

!

Tc =
2

ln(1 +
p
2)

= 2.26918531421 =) �c ⇡ 0.440687



State-of-the-art numerical result   
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Time: 100 seconds on a modern laptop for this plot. 
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Classical XY model 

  [Journal of  Stat. Mech, 2020], 2004.06314
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Simplest spin model with continuous symmetry  in two dimensions. The nearest 
neighbour Hamiltonian is given by: 


                                   


In order to construct the tensor representation, we decompose the Boltzmann weight 
(for say  = 0) using Jacobi-Anger expansion as:


                                 


where,  is the modified Bessel function of  first kind.  


O(2)

ℋ = − J∑
⟨ij⟩

cos(θi − θj) − h∑
i

cos θi

h

exp(β cos(θi − θj)) = I0(β) +
∞

∑
ν=−∞,≠0

Iν(β)eiν(θi−θj)

Iν



                             Classical XY model 
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     The partition function can then be written as: 


                                      


     By integrating over , we obtain the initial tensor for XY model   


                                           


Z = ∫ ∏
i

dθi∏
νij,μi

Iνij
(β)Iμi

(βh)eiνij(θi−θj)+iμiθi

dθi

Tijkl = Ii(β)Ij(β)Ik(β)Il(β)Ii+k−j−l(βh)

i j

k

l
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Taking the limit , we obtain the critical temperature of  0.89290(5) which is 
consistent with the most precise MC results available in literature. This result can be 
further improved using larger bond dimension . It is known that in XY model 
correlation length increases exponentially as we approach . Already at , 
the correlation length as noted in 1907.04576 is more than thousand lattice sites. 
Precise MC results used a square lattice of  size  while we used a lattice 

. 


h → 0

χ
T = Tc T ≈ 0.95
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Figure 4: A representative example of the determination of the critical temperature for a given

magnetic field. The vertical shaded band denotes the error in the estimate of the critical tem-

perature.

Method Year System Size Tcritical

Monte Carlo [21] 1992 29 ⇥ 29 0.89400(500)

HTE [22] 1993 – 0.89440(250)

Monte Carlo [23] 1995 28 ⇥ 28 0.89213(10)

Monte Carlo [24] 2005 211 ⇥ 211 0.89294(8)

HTE [25] 2011 – 0.89286(8)

Monte Carlo [15] 2012 216 ⇥ 216 0.89289(5)

Monte Carlo [26] 2013 29 ⇥ 29 0.89350(10)

Higher-order TRG [7] 2013 240 ⇥ 240 0.89210(190)

Uniform MPS [8] 2019 – 0.89300(10)

Higher-order TRG [This work] 2020 250 ⇥ 250 0.89290(5)

TN

Table 1: The estimate of the temperature for the BKT transition in classical XY model with

different methods. The three most recent estimates have all been done using real-space renor-

malization with tensor networks (TN).
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The lattice action for  is given by:  
 
                                            


where  is the gauge coupling and  is the matter coupling. We fix to unitary gauge as 
used in several previous works by Greensite et al. [Also Osterwalder-Seiler-Fradkin-
Shenker].


We expand the Boltzmann weights in terms of  characters (called character expansion).  
Writing, , we have for gauge piece: 


                                               


and similarly for the other term. 

SU(2)

S = −
β
2

Re Tr□ −
κ
2

Re TrU

β κ

S = Sg + Sκ

e−Sg = ∏
x

∑
r

Fr(β)χr(UUU†U†)



                 Link (A) and Plaquette (B) tensors                       
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With the knowledge of  these two tensors, one can construct the fundamental 
tensor. 


1901.11443

A(rlmlamlb)(rrmramrb)(κ) =
1
drr

rr+rl

∑
σ=|rr−rl|

Fσ(κ)Crrmrb
rlmlbσ(mrb−mlb) × Crrmra

rlmlaσ(mrb−mlb) .

B(rlmlamlb)(rrmramrb)(ramalmar)(rbmblmbr) = {Fr(β) δmla,mal
δmar,mra

δmrb,mbr
δmbl,mlb

if rl = rr = ra = rb = r

0 else.

Tijkl(β, κ) = ∑
α,β,γ,δ

Bαβγδ(β)LαiLβjLγkLδl(κ), where Aij = ∑
k

LikLT
kj



                                 Exact results for                     β = 0
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1901.11443

For , we can write exact value of  the Polyakov loop in terms of  Bessel  
functions.  This provides a simple check of  the tensor formulation. The exact 
expression is:   
 

                                                 

β = 0

⟨P⟩ = 2 ( I2(κ)
I1(κ) )

Nτ



                                           Results                 
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κ = 0.5 κ = 2

Polyakov loop correlator is given by, . This also provides a 
measure of  monitoring confinement when  (the slope gives , string tension). 
In a Higgs phase, it is constant and independent of  .


We show the results for correlator in two phases separated by cross-over at around 
. The left shows the confining phase while for the one on the right a string 

breaking occurs and it goes to Higgs phase for sufficiently large lattices. Results are 
consistent with Monte Carlo results from 1402.7124


C(d) = exp(−βV(d))
V ∝ d σ

d

κ ≈ 1.4



Current work in progress!  
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•  We are currently exploring the tensor network methods for three-
dimensional classical statistical systems. This has not been much 
pursued due to the computational complexity. However, due to some 
recent efficient representations of  higher-dimensional tensors, this 
might be possible.  



Open problems!  
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•  Study  gauge theories using tensor networks & large  theories 
in the next decade or so ? 


•  Quantum simulations of  spin models and study real-time evolution of  
supersymmetric lattice theories starting with  dimensions starting 
with  and then move to large  ? 


•  Develop higher-dimensional (i.e. or ) methods shed some 
light on connection to holography as MERA did? 

SU(3) N

0 + 1
SU(2) N

2 + 1 3 + 0



 
 

Thank you
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