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What this talk could have been

★ Introduction to tensor renormalization group (TRG) approach to efficiently 
solve spin models (Ising, O(2), O(3) etc.) and lattice gauge theories: 2d/3d  
and  Wilson action + fundamental matter. 

★ This `has’ the potential to substitute the Monte-Carlo approach for wide range 
of  2d/3d/4d models since there is no `sign problem’. However, not a panacea! 
For ex: 2d with -term was studied few years back in 1911.06480. This has 
exact solution at strong coupling but numerical studies essential as . A 
possible window to understanding topology & other rich properties in lattice 
field theories. Also studies of  2d O(2) &  at finite chemical potential!  
 
 
Some work I’ve done —  1901.11443, 2004.06314 + some upcoming! 
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What this talk will be 

★ Introduction to how we can discretize and study certain supersymmetric 
gauge theories on the lattice.  

★ What opportunities open up for the lattice at strong couplings and large  
(’t Hooft limit) in various dimensions and how it can sharpen and refine our 
understanding of  holography and string theory. Some future prospects on 
how we can continue this program and computational advances we need to 
achieve to make things much more interesting! 

N
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Outline

★ Holography for 0+1-dimensional matrix models and generic SYM theories 
in  > 1 [for ex:  SYM] on the lattice.  

★ Phase structure of  a supersymmetric matrix model at finite couplings and 
large  at finite temperatures.  

★ 2  & 3  SYM on the lattice and thermodynamics of  the dual black branes  

★ Future directions!        

4 ≥ d 𝒩 = 4
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Holography 
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The idea that a quantum-gravitational theory in one higher dimension ( ) 
dimensions is related to some quantum field theory (without gravity) in one 
lower dimension ( ) on its boundary.  
 
It is now widely believed that the any consistent theory of  quantum gravity 
will admit a holographic description.  

First hints came in 1970s, when Stephen Hawking and  Jacob 
Bekenstein found that the black hole entropy was proportional to the area of  
its event horizon.  

d + 1

d

SBH =
kBc3A
4Gℏ

https://en.wikipedia.org/wiki/Stephen_Hawking
https://en.wikipedia.org/wiki/Jacob_Bekenstein
https://en.wikipedia.org/wiki/Jacob_Bekenstein
https://en.wikipedia.org/wiki/Event_horizon


Supersymmetry! 
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          It is elegant, beautiful, broken, and has not been experimentally observed. 



           AdS/CFT [Maldacena, 1997]
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A well-defined correspondence was conjectured between a five-dimensional 
quantum theory of  gravity in Anti- de Sitter (AdS) space-time and four-
dimensional super-conformal field theory (CFT) on the boundary. In the limit of  

, the quantum gravity reduces to Einstein-like gravity in the bulk. 
       
N → ∞, λ ≫ 1



But not only !AdS5/CFT4
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But, there is nothing special about the fundamental idea of  holography to 
the pair of  4 and 5 dimensions. Within one year, it was rigorously defined 
for maximal supersymmetric gauge theories for  < 4 even though they are 
no conformal. One of  the most studied pair  is  

Maximally supersymmetric Yang-Mills theory in +1-dimensions is dual to 
D -branes in supergravity at low temperatures in a special limit (large , 
strong coupling). In other words, the supergravity solutions corresponding to 
+1 superYang-Mills are black -brane (D -brane) solutions. 

d

p
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AdS3/CFT2

higher dimensional black hole version in ST.



Zoo of  SYM theories!
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The starting point is the action of  ten-dimensional =1 SYM theory: 
                    

 

where  is the covariant derivative,  is a spinor with 16 components (real).  

                          

𝒩

S =
1
g2 ∫ d10x Tr (−

1
4

FμνFμν + ψDμγμψ)
D ψ



 super-Yang-Mills (SYM) 𝒩 = 4
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Obtained by dimensionally reducing the ten-dimensional SYM theory down to four 
dimensions. It is a conformal field theory, beta-function vanishes, consists of  six 
scalars, sixteen real fermions, all massless and in the adjoint representation of  the 

 gauge group. Simplest interacting QFT in four dimensions.  
 
The action consists of  kinetic, Yukawa, quartic scalar commutator terms and are all 
related by supersymmetry. The superconformal algebra include  
symmetry and is part of  R-symmetry group apart from the usual Euclidean 
group. At finite temperatures, SUSY is broken. Sometimes dubbed as close cousin of  
QCD (not physical though!)  

SU(N )

SU(4) = Spin(6)
SO(4)



Supersymmetry (SUSY) on the lattice
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Beset by difficulties from the start because of  SUSY algebra. The algebra is an extension of  
Poincare algebra by supercharges Q and . Roughly,  and  generates infinitesimal 
translations which is broken on the lattice. SUSY algebra not satisfied at the classical level.  

Alternative: 
Preserve a subset of  this algebra and check (expect!) that the supersymmetry is restored as 
continuum limit is taken. This idea has led to an improved understanding and has used for 
the results mentioned later in this talk. For review see: 0903.4881 

[Cohen, Kaplan, Katz, Unsal, Catterall, Sugino]  
during 2000-2008 using different but equivalent approaches.   

 

{Q, Q} ∼ Pμ Pμ



Still some not possible 
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One of  the requirements that twisting procedure can be done is that one must start with 
sufficient SUSY in the continuum theory ( ). Clearly maximal SUSY theories in  satisfy 
this easily. For direct head-on dealing with fine-tuning and studies of   SYM in four 
dimensions, see work by [Bergner, Münster, Montvay et al.]. See an earlier talk in this colloquium 
series for more on this.  
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Lattice  SYM𝒩 = 4
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This talk will present results based on the geometric construction and idea 
of  topologically twisting (maximal twist) a supersymmetric gauge theory. 
This generates the 0-form supercharges needed to preserve a subset of  
SUSY algebra. In some sense, this is just a way of  rewriting original fields 
and is justified for flat Euclidean space. Supercharges are broken into 
-forms and then put on the lattice sites, links, plaquettes respectively.   
 
Basic idea: Take maximum subgroup  of  the R-symmetry 
group and construct . This gives a nilpotent 
(i.e. ) supercharge which can then be preserved exactly on the lattice. 
If  we look at the table, now it is clear why certain theories cannot be twisted 
in this sense! 

p

SO(4) ⊂ SO(6)
SO(4)tw. = diag[SO(4)E × SO(4)R]

Q2 = 0



Special lattice required
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✦  To reduce the fine-tuning to minimum possible and to identify the 
twisted fields in a consistent manner, we cannot just work with hypercubic 
lattice. We need what is called  lattice. Four-dimensional version of  the 
triangular lattice shown below.  

✦   point group symmetry and five links which is natural setting to lay out 
ten field components of  the  SYM theory. But, basis vectors are not 
orthogonal. 

A*4

S5

𝒩 = 4



Public Code
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SUSY lattice community is small and large-scale lattice calculations still in 
early days. We make our parallel, four-dimensional, arbitrary  code 
available on GitHub. Updated version release to follow on Computer 
Physics Communications (CPC) soon. 

N



Lower-dimensional SYM theories

16

As nice as it sounds, on the lattice  SYM is extremely hard and 
probably not possible to study at large  and  in practice using classical 
computers. Also, there is a sign problem which we have observed for . 
Additional complications because of  being a super conformal field theory 
with no scales, moduli etc.  
 
My research has focused over the years on the lower-dimensional version of  
this theory which are non-conformal and the computational costs are under 
more control. Also, sign problem does not seem to play a role for range of  
couplings for interesting finite-temperature black hole Physics. Note that 
they are also sometimes referred to as `non-extremal’ black holes. 

𝒩 = 4
N λ

λ ≥ 5



Results presented in this talk 
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★ 0+1-dimensional matrix QM (BFSS and BMN models) [In progress, 
2021] 

★ 1+1-dimensional  SYM at finite temperatures  [published 2017]  

★ 2+1-dimensional  SYM  [published 2020] 

𝒩 = (8,8)



Matrix Models
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Obtained by dimensional reduction of   SYM from ten dimensions down to 
one. The theory has SU(N) gauge symmetry and SO(9) internal symmetry group 
corresponding to nine scalars. Simplest holographic gauge theory with well-
defined gravity dual.  

                

 
                                                   

-terms break the . BFSS has a single deconfined phase 
but BMN model admits a deconfinement phase transition! 
 
BFSS := Banks-Fischler-Shenker-Susskind [1996] 
BMN := Berenstein-Maldacena-Nastase [2002] 

𝒩 = 1

SBFSS =
N
4λ ∫ dtTr[(DtXi)2 −

1
2 [Xi, Xj]2 + ΨTDtΨ + iΨTγ j[Ψ, Xj]]

SBMN = SBFSS + S(μ)

μ SO(9) → SO(6) ⊗ SO(3)



State-of-the-art lattice results for BFSS
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•    is known from supergravity (SUGRA) calculations.  

• Finite-T corrections =>   corrections in string theory 

The coefficients   etc. are   not  known from supergravity.  We 
only know that corrections start at    

a0

α′ 

a1, a2 . .
(α′ )3 ∼ T9/5

Figure from arXiv: 1606.04951 

(Hanada, Ishiki et al.)   



How such nice results?
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They explored  = 32 and took the continuum limit. Taking continuum 
limit almost trivial since one-dimensional! But nice results are possible 
because their code parallelizes over the matrix degrees of  freedom. 
Parallelization over  is essential to reproduce holographic behaviour 
accurately in this model. We have not yet explored making our MILC lattice 
QCD-based code to do this yet. We only have parallelization over lattice 
volume, not so useful in 1d!

N

N



BMN matrix model 
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 SBMN = SBFSS −
N
4λ ∫ dτ Tr( μ2

32 (Xi)2 +
μ2

62 (XM)2 +
2μ
3

ϵIJKXiXjXk +
μ
4

Ψα (γ123)αβ
Ψβ)

The flat directions of  the BFSS model are lifted by giving masses to  
and  scalars. In addition, there is a cubic scalar term which is also 
known as ‘Myers term’ plus a fermion term. Dual gravity solution applicable 
when  with . 

SO(3)
SO(6)

g = λ/μ3 ≫ 1 μ ≪ 1, N → ∞



In this limit, the theory can be studied perturbatively. Note that since , 

this is the large  limit. In this case, the model becomes a supersymmetric 
gauged Gaussian model. It was well-studied and the critical temperature was 
determined to be: 

                                       

 
which increases with  but is bounded by some gravity result as we will see 
soon. For  = 0, we have .  
 
 
 

g =
λ
μ3

μ

T
μ c

=
1

12 ln 3 [1 + O(λ) + O(λ2)]

λ
λ (T/μ)c ≈ 0.076

Results at  [see most recently O’Connor et al. 1805.05314 + more]g → 0

22



Conjectured phase diagram 
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For this model, the phase structure should look like one given below. The 
solid lines are known results from perturbation theory and gravity 
computations. The dashed lines have no explanation yet. There might 
also be non-smooth behaviour unlike what is shown.  

1411.5541  [Costa, Penedones, Greenspan, Santos] 



Results from gravity computation i.e. g ≫ 1
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We need to reproduce the results using lattice. The (internal) energy density 
has a parametric form given by  similar to BFSS matrix 
model. However, now,  is not known. Lattice should be able to compute 
this along the same lines as done for BFSS where  [Open] 
 
The critical value of   was computed by finding the location where 
the free energy has a zero in 1411.5541. Should be match to this critical 
value using the lattice. This is work in progress!  
 
Also using the holographic dictionary, the scalar squares i.e.  in super 
YM theories are related to the topology of  the black hole horizon in the dual 
gravity interpretation. 
 
 
 
 

f(μ) ∼ a0(μ)T14/5

a0(μ)
a0(0) ≈ 7.41

T/μ ∼ 0.106

Tr(X2)



Results - 1 [preliminary]    2003.01298, 2104. XXXXX
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Finite coupling phase transition from lattice 
calculations. 

Polyakov loop as order parameter



1+1-dimensional SYM
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Dimensionally reduce the four-dimensional theory we have discretized on 
lattice down to two dimensions. Fermion with SUSY breaking boundary 
conditions.  

• Dimensionless couplings, , , and lattice aspect ratio  
.             

• Phase transition between localized black hole and black string conjectured 
using gravity computations at             

• This is a topological transition on the gravity side, dual to deconfinement 
transition on the gauge theory side. In the large  limit, even at weak 
coupling, there is a first -order phase transition [argued by some to be like 
the kind of  phase transitions seen in the famous one-plaquette 2  pure 
lattice gauge theory by Gross/Witten/Wadia]. This transition continues to 
the strong coupling limit.  
 
 
 

A*4

rx = λL rβ = λβ = 1/t
α = L/β

α2rβ ∼ 2.45

N

d



Regime of  validity in coupling space
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To have a valid SUGRA description we need to satisfy certain conditions:  
 
1. Radius of  curvature should be large in units of  . This implies . 
 
2. The string coupling should be small i.e.  

 
Both these conditions combined gives:  

 
 
We could at best reach lattice of  about 250 sites with  and different  
 

α′ rβ ≫ 1

gs → 0

1 ≪ rβ ≪ N2/3

∼ SU(16) α



Results   [PRD, 2018] 
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Thermal behaviour in different phases 
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Uniform black-string phase has action density computed by gravity 
computations given by  while the localized phase has the 

gravity result  .  

If  the lattice was not skewed (reduction from  to ) and basis vectors 
orthogonal then  while for triangular lattice it is . It is then a 
challenge for lattice to reproduce these results. 
 
 

−
sBos

N2λ
= − 1.728/r3

β

−
sBos

N2λ
= −

2.469
r16/5
β α2/5(1 − γ2)7/5

A*4 A*2
γ = 0 γ = 1/2



       Results [published in PRD, 2018] 
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Uniform D1-phase



2+1-dimensional SYM
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The three-dimensional SYM also has a holographic description at large  and 
strong coupling. In this case, the black holes are known as black -branes. 
The weak coupling (high-temperature) thermodynamic behaviour is just 
expected to be  by just counting d.o.f. while the power-law behaviour of  
the energy density changes at strong coupling.        
 
 
                          
 

It is worth noting that for SYM on an analogous torus in  -dimensions we 
would have parametric dependence  for  from the 
gravity dual, and the  limit would go as . In the 
conformal case these powers coincide

N
D2

∼ t3

sBos
N2λ3

= − 0.831t10/3
sBos
N2λ3

= − 2.598…t3

p + 1
sBos ∝ t(14−2p)/(5−p) t ≪ 1

t ≫ 1 sBos ∝ tp+1 p = 3

increasing  t = T/λ



Results   [published in PRD, 2020] 
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Center symmetry broken 
phase (high T i.e. )λt

Uniform nature 
improves with large N. 
We refer to this as D2 

phase. 



Results   [published in PRD, 2020] 
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The high-T behaviour serves as a check of  our lattice computations. At 
low temperatures, it starts to tend towards the gravity predictions. These 
results are for . We have seen that increasing  is as important as 
taking the continuum limit. These results made use of   5 million core-
hours. 

N = 8 N
∼

0.001
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Future directions 
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• The major problem ahead is studying the thermodynamics of   SYM in 
four dimensions. The temperature dependence is trivial since it is always  
but coupling dependence is unknown since there is no tool available at finite .  

• It would be interesting to study the Maldacena-Wilson loop in these 
supersymmetric gauge theories which are defined as:  

                              

• Study static potential in , scaling dimensions of  some simple BPS not-
protected operators.   

• Computational: Parallelize over matrix degrees of  freedom!  
 

𝒩 = 4
∼ T4

λ

W =
1
N

Tr ̂Pexp[∮C=σμ(s)
ds(Aμ(σ) ·σμ + ̂θi(s)Xi(σ))]

𝒩 = 4



 
 

Thank you


