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1. AdS/CFT and its generalisation for p < 3 i.e. non-conformal 
cases      

2. Lattice formulation of               super Yang-Mills (SYM) theory 
and its dimensional reductions.   

3. Results for matrix models (BFSS and BMN) and 2d sixteen 
supercharge SYM theory    

4. Tensor renormalization group (TRG) applied to 2d non-
Abelian gauge/Higgs model  

5. Some future directions. 
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𝒩 = 4

Overview



Gauge/Gravity duality 

• 4d           U(N) SYM theory associated to the world volume of N 
D3-branes is dual to Type IIB supergravity on      in the 
decoupling limit (large N,   )               AdS/CFT   

• Maximally supersymmetric (p+1)-dimensional YM theory dual to 
Dp-branes at low temperatures - dual description in terms of 
Type IIA/B (even/odd p) low-energy string theory.  In this talk, we 
will not talk about 

𝒩 = 4

λ
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AdS5 × S5

p > 3



= 4 SYM action
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For this theory to be dual to classical (super)gravity, we 
need planar limit and strong coupling. 
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• SU(N) gauge theory with four fermions and six scalars, all massless and
in adjoint rep.

• Supersymmetric: 16 supercharges

• Fields and Q’s transform under global SO(6) R-symmetry

• Conformal: � function is zero for all ’t Hooft coupling, � = g2YMN



(S)YM theory
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               Lattice N=4 SYM      for review see, 0903.4881

• We know that for understanding QCD at strong couplings, lattice 
has been very successful. So, let’s apply it to SUSY theories! 

• Several complications because of supersymmetric algebra, field 
content, conformal symmetry, holographic limits, and fermions!! 

• Some progress in the last decade! Use ideas such as twisting of 
supersymmetric theory, Kaehler-Dirac fermions, A4* lattice.
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Topological twisting and the lattice  
                                                                         (Vafa, Witten, Yamron, Marcus) 
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• Maximal twisting procedure gives,  

• Q’s transform with integer spin under this new rotation group.  

• Results in one scalar supercharge (0-form), which is exactly 
preserved on the lattice. This construction similar to one by 
orbifolding (Kaplan et al.) 

• Not all supersymmetric (SUSY) theories possible to study on the 
lattice. In fact, N=4 SYM is the only theory (in 4d) possible to study 
on lattice! No complains here!

SO(4)tw ⌘ diag [SO(4)Euc ⇥ SO(4)R] ; SO(4)R ⇢ SO(6)R
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Set of theories possible to study on the lattice

Theory R-symmetry group Twisted/orbifold construction
d = 2,Q = 4,N = 2 SO(2)⇥ U(1) X
d = 2,Q = 8,N = 4 SO(4)⇥ SU(2) X
d = 2,Q = 16,N = 8 SO(8) X
d = 3,Q = 4,N = 1 U(1) X
d = 3,Q = 8,N = 2 SO(3)⇥ SU(2) X
d = 3,Q = 16,N = 4 SO(7) X
d = 4,Q = 4,N = 1 U(1) X
d = 4,Q = 8,N = 2 SO(2)⇥ SU(2) X
d = 4,Q = 16,N = 4 SO(6) X



Dimensionally reduced SYMs
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• Reduce the four dimensional theory down to one dimension (time) 
to get BFSS (Banks-Fischler-Shenker-Susskind) model.  

• Add mass deformation to this theory to study matrix model on pp-
wave space-time, known as PWMM or BMN (Berenstein-Maldacena-
Nastase) model  

• Reduce the theory to (1+1)- dimensions to study SYM theory dual 
to Type IIB SUGRA having different black hole solutions (uniform 
black string and localised black hole) and transition between them. 



Regime of supergravity validity (p<3)
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To have a valid SUGRA limit, we need: 

• Radius of curvature large in units of      , which means    

• The string coupling,              , which means that N should be large.  

These two combined gives the following :                                 ,  

note that for p=3, this reduces to the familiar limit. 

α′�
gs ≪ 1

1 ≪ λpβ3−p ≪ N
10 − 2p

7 − p

T ≪ 1 or λ ≫ 1



BFSS matrix model  
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The action is, 

This model can be obtained by the dimensional reduction of                 SUSY 
in ten dimensions.  

I, J runs from 0 … 9, and we have total of sixteen     , where all fields are N x 
N matrices and in the adjoint representation of the gauge group SU(N).  

                                                    . 

SBFSS =
N
4λ ∫ dtTr[(DtXi)2 −

1
2 [XI, XJ]2 + ΨTDtΨ + iΨTγ j[Ψ, Xj]]

𝒩 = 1

Ψ



State-of-the-art lattice results 
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•                 is known from SUGRA calculations.  

• Finite-T corrections =>      corrections in Type II string theory 

The coefficients            unknown from supergravity. We only know that 
corrections start at the           …         

Figure from arXiv: 1606.04951 

(M. Hanada, G. Ishiki et al.)  

(N=32, L=32)                                                                                     

a0 = 7.41

α′�
a1, a2

(α′�)3



Phase transition?
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Can we find study some holographic model with some interesting phase structure? 
BFSS matrix model only has a deconfined phase. However, when we consider the 
massive deformation of this model (known as BMN or PWMM) model, there is an 
interesting phase structure.  

                                                         

                           arXiv: 1411.5541  (Costa, Penedones, Greenspan, Santos) 



BMN matrix model 
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The flat directions of the BFSS model are lifted by giving masses to SO(3) 
and SO(6) scalars. In addition, there is a cubic scalar term which is also 
known as ‘Myers term’ plus a fermion term. Unlike BFSS, this model is on 
pp-wave spacetime. Even after the addition of these mass terms, 
supersymmetry is intact.  

Dual classical gravity solution valid when N is large and coupling is strong. 

SBMN = SBFSS −
N
4λ ∫ dτ Tr( μ2

32 (XI)2 +
μ2

62 (Xi)2 +
2μ
3

ϵIJK XI XJXK +
μ
4

ΨT (γ123) Ψ)



BMN phase diagram  
                                          (S. Catterall, RGJ, A. Joseph, D. Schaich, T.Wiseman, 19XX.XXXXX)
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Use naive discretisation to study the model on the lattice. Since, these theories is super 
renormalizable in d < 4, such a discretization is good enough for 1d SUSY theories.  

The order parameter for the thermal (deconfinement) transition is Polyakov loop. Finite 
volume phase transition in the large N limit.  

In fact, it might also be interesting to measure Entanglement Entropy (EE) for these finite-T 
transitions (Ryu and Takayanagi have argued that it plays a role similar to an “order 
parameter) ! 

First explore,            , and see if the perturbative results (large    ) are reproduced.   g → 0 N

⟨P⟩ ≠ 0 Deconfined ⟨P⟩ = 0 Confined



Understanding BMN phase diagram .. continued 
                           (S. Catterall, RGJ, A. Joseph, D. Schaich, T.Wiseman, 19XX.XXXXX)
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Understanding BMN phase diagram .. continued 
                        (S. Catterall, RGJ, A. Joseph, D. Schaich, T.Wiseman, 19XX.XXXXX)
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Lattice results interpolate between the two limits and we see the dependence 
of the critical temperature on coupling! (T/   vs. g) !! μ



1+1- SYM theory
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Reduce the 4d theory down to two dimensions. Two additional scalars 
corresponding to the reduced directions. Only some region of parameter 
space in SYM theory has valid supergravity description which given by,                         

We measure Wilson line around the two cycles. The gravity solutions are 
static black holes, their Euclidean time circle is contractible so we expect a 
deconfined Polyakov line,           The homogeneity of the horizon is taken 
to indicate that the eigenvalues of Wilson line are uniformly distributed at 
large N (for which we will see the results later).  

1 ≪ ⋯ ≪ N2/3

Pβ ≠ 0.



1+1- SYM details
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• Dimensionless coupling,                      ,                ,  

• Santos et al. calculation from gravity side matches old work for 
square lattice. Gregory-Laflamme transition between localized 
black hole and homogeneous black string at                      

• This is a topological transition on the gravity side, dual to 
deconfinement transition on the gauge theory side. In the large N 
limit and weak coupling, there is well-known Gross-Witten-Wadia 
transition.  

• We study this theory on a reduced A4* —> A2* (triangular lattice) 

rτ = λβ = 1/t rx = λL α = L/β = rx /rτ

α2rτ ∼ 2.45



1+1- SYM theory - results  
                                                           (PRD 97, 086020, arXiv:1709.07025) 
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1+1- SYM theory - results  
                                                           (PRD 97, 086020, arXiv:1709.07025) 
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Ongoing & future work in 3d SYM and N=4 SYM  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Trying to understand the thermodynamics of dual uniform D2-branes  
from 3d SYM at strong coupling (in preparation, 19XX.XXXX) 

Calculate the static quark potential by computing Maldacena-Wilson 
loop and check predictions (hep-th/9803002). Well-known dependence 
in 4d :             

                                                                                                                    
Generally, for a (p+1)-dim SYM theory in regimes where supergravity 
(SUGRA) description is valid, it is expected to follow 

Speculative work: Can EE can be calculated on the lattice? For SUSY 
theories in lower dimensions? 

V ∼ λ

V ∼ λ
1

5 − p



Part II - Tensor networks
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                               Several motivations to study tensor networks  

1. Possibility of formulating gauge theories in terms of tensors can 
enable us to study theories where usual Monte Carlo methods 
fail (most famously, sign problem!). 

2. Provides an arena for studying lower-dimensional critical  
systems and gapped systems faster and more efficiently than 
any other numerical method!  

3. Expected to play important  role in putting AdS/CFT on a firm 
footing via understanding the properties (geometry) of the bulk 
physics from entangled quantum state at the boundary.  



2d non-Abelian gauge+Higgs model 
                                                        (A Bazavov, S Catterall, RGJ, J Unmuth-Yockey, 1901.11443)
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S =

 
��
2 Tr⇤� 

2TrU

!
, where � is the gauge coupling and  is the matter

coupling in the unitary gauge. The first term is the standard pure gauge Wilson
action featuring a plaquette.

We expand the Boltzmann weights in terms of characters (called character expansion). 

               is expressed in terms of modified Bessel functions of first kind. 

e−Sg = ∏
x

∑
r

Fr(β)χr(UUU†U†)

e−SΦ = ∏
x,μ

∑
r

Fr(κ)χr(Ux,μ)

Fr(⋯)



Link (A) and plaquette (B) tensors 
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A(τ)
(rlmlamlb)(rrmramrb)(κ) =

1
drr

rr+rl

∑
σ=|rr−rl|

Fσ(κ)Crrmrb
rlmlbσ(mrb−mlb) × Crrmra

rlmlaσ(mrb−mlb) .

B(rlmlamlb)(rrmramrb)(ramalmar)(rbmblmbr) = {Fr(β) δmla,mal
δmar,mra

δmrb,mbr
δmbl,mlb

if rl = rr = ra = rb = r

0 else.

In case of Abelian-Higgs model, the A tensor only has factors of 
Bessel’s function. With the knowledge of these two tensors, one can 
construct the fundamental tensor.  



Diagrammatic representation of A and B tensors                                                                                                                       
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The fundamental tensor (T)

Using A and B tensor, we construct T  tensor. And then several 
copies of T tensor we can make up the entire lattice. Note that we 
can just use A by exploiting the translational invariance of the 
lattice.  

Tijkl(β, κ) = ∑
α,β,γ,δ

Bαβγδ(β)LαiLβjLγkLδl(κ), where A = LLT
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Coarse-graining the tensor network

c           The partition function can then be written as,  

            We use HOTRG (higher order tensor renormalisation group) to implement 

           coarse-graining by truncating the local space to                     . We choose 

                       , which corresponds to size of initial T to be 14^4. Using  

          would imply T of size 5^4. The choice of r_max depends on the  

          gauge theory one wants to study, coupling regime, running/walking.   

          In some cases, there are arguments that using an action other than Wilson   

          action can improved truncation over “r”, ex: heat kernel action.  

Dbond = 50

Z(β, κ) = Tr [∏
x

T (x)(β, κ)]

rmax = 1 rmax = 1/2
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      Polyakov line in tensor formulation

Defined as,  

Impure tensor      which contains the Polyakov line in the 1/2-rep can be constructed as,  

One does the coarse-graining on a given time-slice and then inserts this tensor at the 
edge of the lattice (actually, can insert anywhere due to translational symmetry)  

⟨P⟩ ≡ Tr [
Nτ−1

∏
τ=0

D
1
2(Ux,τ)]

Ã

Ã(τ)
(rlmlamlb)(rrmramrb)ij(κ) =

1
drr

1
2 +rl

∑
r′ �=| 1

2 −rl|

rr+r′�

∑
σ=|rr−r′ �|

Fσ(κ)Crrmrb
r′ �(mlb+i)σ(mrb−mlb−i)C

rrmra
r′ �(mla+j)σ(mrb−mlb−i)C

r′ �(mlb+i)
rlmlb

1
2 i

Cr′�(mla+j)
rlmla

1
2 j

.
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Exact result for                β = 0

For         , we can write the expectation value of Polyakov loop 
as,                       and provides a simple check of the tensor 
formulation.  

⟨P⟩ = 2 ( I2(κ)
I1(κ) )

Nτ

β = 0
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Other observables..

Matter susceptibility defined as,                       compared with the 
Monte Carlo results!  Note that their computation time differ by 
factor of 1000!  (cross-over behaviour around             ) 

χκ =
1

NsNτ

∂2 ln Z
∂κ2

κ ∼ 1.5
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Polyakov loop correlation - Confining & Higgs Phase

 In the limit of zero temperature, the correlator is given as,  

                                   . This also provides a measure of monitoring  

confinement when           (the slope gives    , string tension). On the 
other hand, in a conformal theory, the potential is Coulomb like such as 
in N=4  SYM. In a Higgs-like region, it is constant and independent of R.  

Two distinct phases: 1) Confining phase and, 2) Higgs-phase.   

                                

CPP†(R) = exp[ − βV(R)]
V ∝ R σ
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Results - Static potential 

On the left, we have                , which is in the confining regime  
and on the right, we have               which is in the Higgs like 
region. There is a crossover behaviour around             

κ = 0.50
κ = 2.0

κ ∼ 1.5
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Mass gap and continuum limit

We calculate the mass gap by evaluating the energy 
difference between the first excited and the ground state. 
One finds that,               and we see that correlation length 
increases as continuum limit is taken                   

a
ξ

∝ ln( λ1

λ0
)

β = cN2
s → ∞ with c = O(1)
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       Difference in results between HOTRG and Monte Carlo  

Though we find good agreement between tensor results and Monte 
Carlo, there seems to be small disagreement at          . We guess that 
this might be related to breaking of the HOTRG algorithm. We are 
exploring possible alternatives. 

κ ≥ 2
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Future work!

• For precision holographic checks and understanding the nature of bulk geometry, we 
need to access larger N by parallelising the Monte Carlo over both the lattice volume 
and colours. Extract static potential in 3d SYM and look at the possibility of 
measuring the entanglement entropy as order parameter for black hole transitions (in 
fact, the EE is known for 3d N=8 SCFT where it goes as         between IR fixed point 
dependence of         and free field result of      , Ryu & Takayanagi, arXiv:0605073)  

• One interesting possibility is to measure the Renyi entropy in this non-Abelian model. 
Also plan to revisit classical XY model with these more efficient tensor algorithms.  
 

N5/3

N3/2 N2



                       

                     Thank You! 
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