
at large and finite

Lectures Plan

1) Large N limit of matrix molds
2) Ane matrix model - Analytic \& Numerical sabtim
3) Generalization to three matrix model chain
4) Holographic matrix models

Classic reference: $2 d$ quantum grainy ξ Random Matrices hep-th/9306153

Large N
The theory of strong interactions ie, QCD has a gage group SU(3), where SU stands for special unitary ie, matrices which are unitary with determinant equal to one.
't Hooft (1974) proposed that in some cases, if we take $\operatorname{SU}(N)$ rather then $S U(3)$, it becomes easier.

Af first, it seems surprising that comvidening $S U(N)$ with large N is any better then SU(3) but this is not true.

Anally the SU(N) Yang-Mills action is given by:

$$
S=\frac{1}{4 g^{2}} \int d^{4} x \operatorname{Tr}\left(F^{\mu v} F_{\mu \nu}\right)
$$

for large N limit, we compiler $\lambda=g^{2} N$ (t Hoops $\underset{\text { coupling }}{ }$ coupling)

$$
S=\frac{N}{4 \lambda} \int d^{4} x \operatorname{Tr}\left(F^{\mu v} F_{\mu v}\right)
$$

Large N has some nice properties:

* Factorization: $\langle A B\rangle=\langle A\rangle\langle B\rangle+\omega(1 / N)$!
* Volume reduction: Eguchi- Kawai reduction!
(center symmetry intact)!!
* Role in holography: AdS/CFT conjecture! gange/graity duality
* Master field. Gauge field configurations dominated by single configuration!

$$
\begin{align*}
\rightarrow u_{\mu} & \mapsto e^{i \phi} u_{\mu} \\
\phi & \in\left\{0, \frac{2 \pi}{N}, \ldots . \frac{2(N-1) \pi}{N}\right\} Z_{N} \tag{5}
\end{align*}
$$

Diagrams

One offer uses the double line notation for example:

$$
E=6, \quad V=F=4
$$

$$
\text { contribution } \sim N^{\chi} \lambda^{E \cdot V}
$$

Where $x=F+V-E$ $\sim N^{2} \lambda^{2}$

Simplest large N modes

Matrix models (aka Matrix integral)

$$
Z=\int d M e^{-\operatorname{Tr} V(M)}
$$

where $M=$ hermition/unitary matrices
This is known as 1 MM (one matrix model)

For ex:

$$
Z=\int d A d B e^{-\operatorname{Tr} V(A, B)}
$$

is referrer to as $2 M M$.

Put a wide class of $M M$ are not exactly solvable in the large N limit.
Fortunately, 1 MM (hermitian) is solvable.
Prezin, Itzykson, Tuber, Parsi - 1978
We'll not give the detail but the basic idea is:

$$
\begin{aligned}
Z & =\int 2 M e^{\frac{-N}{g^{2}} \operatorname{Tr} V(M)} \\
\Delta^{2}(\lambda)=\prod_{i<j}\left(\lambda_{i}-\lambda_{j}\right)^{2} & =\int \prod_{i} \frac{d}{2 \pi} \lambda_{i} \Delta^{2}(\lambda) e^{-\frac{N}{g^{2}}} \sum_{i} V\left(\lambda_{i}\right)
\end{aligned}
$$

$$
Z=\int \prod_{i=1}^{N} \frac{d \lambda_{i}}{2 \pi} e^{N^{2} S_{e f f}(\lambda)}
$$

where

$$
S_{\text {eff }}(\lambda)=-\frac{1}{g^{2} N^{2}} \sum_{i=1}^{N} V\left(\lambda_{i}\right)+\frac{2}{N^{2}} \sum_{i<j} \log \left|\lambda_{i}-\lambda_{j}\right|
$$

In the $N \rightarrow \infty$, (1) will be domisted by saddle point configuration that extremizes $S_{\text {eff }}$.

Vanning one of the eigenvalues we get saddle point $e \rho^{2}$:

$$
\frac{2}{N} \sum_{j \neq i} \frac{1}{\lambda_{i}-\lambda_{j}}=\frac{V^{\prime}\left(\lambda_{i}\right)}{g^{2} N}
$$

and then we can use complex analysis to pore this as Riemanm-Hibert problem and solve!

Unitary Matrix Models \checkmark Solvalle
Clastic example: Large N two-dimensional $U(N)$ lattice gauge theory with Wilson action.

$$
S(U)=\sum_{P} \frac{1}{g^{2}} \operatorname{Tr}\left(\prod_{p} u+h . c\right)
$$

where $\prod_{p} U=$

$$
\begin{aligned}
\underline{Z} & =\iint^{p} e^{\text {ontary }} \\
& =\operatorname{Det}\left[I_{j-k}\left(\frac{2 N}{\lambda}\right)\right]
\end{aligned}
$$

First studied by Gross, Witter, Wadia (~1980) and was shown to have large N phase transition of third-order at $\lambda=g^{2} N=2$.

Compute $f=-\ln z(N, \lambda)$ using Mathematica. Evaluate fist and second derivative w.r.t λ

Solving Matrix models

$(1978)^{\text {analytical }}$

Bootstrap

$$
(2020)
$$

Monte carlo (carly 2000 onwards!)
major part of what follows!

- Exercise: Use the given Mathematica script and find the expected value for $\operatorname{Tr}\left(X^{2}\right)$ for one matrix model (1MM) with $g=1.0$. This is the analytical result obtained in the planar limit using the well-known 'one-cut' method. Set up this problem for a fixed $N=100$ and carry out the MC procedure. Compare the results.

Reproducing the exact result ming Numeric

We use HMC algorithm to study the matrix models.

Duane, Kennedy, Penllitor , Roweth 1987
Evolution using a time -
reversible \& vole preserving
integrator (Ex: leapfrog)
Generate a series of configurations and estimate the average of a given observable as:

$$
\langle A\rangle=\frac{1}{N} \sum_{i} A\left[\phi_{i}\right]\left(1+\theta\left(\frac{1}{\sqrt{N}}\right)\right)
$$

HMC ALGORTTHM

$$
Z=\int \prod_{x} d p_{x} \prod_{x} d \phi_{x} e^{-H(\phi, p)}
$$

QuS Hemiltionan is

$$
H=\frac{1}{2} \sum_{x} p_{x}^{2}+s(\varphi)
$$

This is then evolved as per Hamiton's e^{n} using a fictituon time ' τ ' (alro knows as MDTU)

\[

\]

At the end of the evolution, an ACCEPT/RESECT test is done.

Sumnerige HMC:-

1) Choose momentum ' p ' from $p\left(p_{i}\right) \propto e e^{\frac{-p_{i}^{2}}{2}}$
2) Solve Hamilton's equation numerically for some time ' τ ' where $(p, \varphi) \longmapsto\left(p^{\prime}, \phi^{\prime}\right)$
3) Accept proposed Q^{\prime} with probability

$$
\begin{aligned}
& P_{\text {acc }}=\min \left[1, e^{-\Delta H}\right] \\
& \text { where } \Delta H=H\left(\phi^{\prime}, \rho^{\prime}\right)-H(\phi, \rho)
\end{aligned}
$$

- $X_{i}(\delta \tau / 2)=X_{i}(0)+P_{i}(0) \delta \tau / 2$
- Now several inner steps where $n=1 \cdots(N-1)$

$$
\begin{aligned}
& P(n \delta \tau)=P((n-1) \delta \tau)-f_{i}\left(\left(n-\frac{1}{2}\right) \delta \tau\right) \delta \tau \\
& X((n+1 / 2) \delta \tau)=X((n-1 / 2) \delta \tau)+P_{i}(n \delta \tau) \delta \tau
\end{aligned}
$$

- $P(N \delta \tau)=P((N-1) \delta \tau)-f_{i}\left(\left(N-\frac{1}{2}\right) \delta \tau\right) \delta \tau$
- $X(N \delta \tau)=X((N-1 / 2) \delta \tau)+P_{i}(N \delta \tau) \frac{\delta \tau}{2}$

- Exercise:
 $\frac{\text { LEAPFROG Algoritim }}{\text { in PYTHON }}$

Phase -space Area

Leapfrog and even fancier algorithms (like Omelyan) Doth shave property of preserving phone space area. Then are propectics of exact solution so it is nice to satisfy them in Numerics. of means that during an update $(\phi, p) \longmapsto\left(\phi^{\prime}, p^{\prime}\right)$ we conserve there space measure.

- Exercise: Show that if a symplectic integrator is used, then $\left\langle e^{-\Delta H}\right\rangle=1$ within errors.

Since we are

interested in the matrix models, we will be intercitis N limit

N XN moment
momentum mat
$0,1)$ and we w
$p(Y)$ given by:
$=\frac{1}{\sqrt{2 \pi}} e^{-X^{2} / 2}$ matrices $?$.

We will now discuss how to generate momentum matrices at the start of the leapfrog method taken from a Gaussian distribution. Suppose we have two numbers U and V taken from uniform distribution i.e., $(0,1)$ and we want two random numbers with probability density function $p(X)$ and $p(Y)$ given by:

$$
\begin{equation*}
p(X)=\frac{1}{\sqrt{2 \pi}} e^{-X^{2} / 2} \tag{4.8}
\end{equation*}
$$

and,

$$
\begin{equation*}
p(Y)=\frac{1}{\sqrt{2 \pi}} e^{-Y^{2} / 2} \tag{4.9}
\end{equation*}
$$

Since X and Y are independent sets:

$$
\begin{equation*}
p(X, Y)=p(X) p(Y)=\frac{1}{2 \pi} e^{-R^{2} / 2}=p(R, \Theta) \tag{4.10}
\end{equation*}
$$

where $R=X^{2}+Y^{2}$. This then means that we can identify the below:

$$
\begin{equation*}
U=\frac{\Theta}{2 \pi} \tag{4.11}
\end{equation*}
$$

and,

$$
\begin{equation*}
V=e^{-R^{2} / 2} \Longrightarrow R=\sqrt{-2 \log (V)} \tag{4.12}
\end{equation*}
$$

This then immediately means,

$$
\begin{align*}
& X=R \cos \Theta=\sqrt{-2 \log (V)} \cos (2 \pi U) \tag{4.13}\\
& Y=R \sin \Theta=\sqrt{-2 \log (V)} \sin (2 \pi U) \tag{4.14}
\end{align*}
$$

Exercise

Implement this in Python !!
\rightarrow We random, uniform $(0,1)$
and check that it indeed generaves
Gambian distribution!!

Random Hermitian matrices

def random_hermitian():
tmp $=$ np.zeros ((NCOL, NCOL) , dtype=complex)
for i in range (NCOL):
for j in range ($i+1, N C O L$):

```
r1, r2 = box_muller()
tmp[i][i] = complex(r1, 0.0)
tmp[i][j] = complex(r1, r2)/math.sqrt(2)
tmp[j][i] = complex(r1, -r2)/math.sqrt(2)
```

return tmp

$$
S=\operatorname{Tr}\left[\frac{x^{2}}{2}+\frac{g x^{4}}{4}\right] \quad \underset{L \text { implement in Python. }}{L x=x^{+} .}
$$

Compute forces $f=-\frac{\partial S}{\partial x}=\frac{-\partial S}{\partial x^{+}}$
Plof the expectation value of $\operatorname{Tr}\left(x^{2}\right)$ vs. MDTU for $g=1$ and compare to exact value.
weill ane shorthand:

$$
\begin{equation*}
t_{q}=\frac{\operatorname{Tr}\left(x^{q}\right)}{N} \tag{19}
\end{equation*}
$$

- Exercise: In a previous exercise, we computed $\operatorname{Tr}\left(X^{2}\right)$ for the one matrix model case. Why did we not consider higher moments of X ? Hint: Use loop equations

$$
\left\langle\operatorname{Tr} M^{k} V^{\prime}(M)\right\rangle=\sum_{l=0}^{k-1}\left\langle\operatorname{Tr} M^{l}\right\rangle\left\langle\operatorname{Tr} M^{k-l-1}\right\rangle
$$

and argue that the results we obtained are consistent.
Exercise: Find t_{6} in terms of t_{2} and check !! END OF LECTURE 1

General Matrix Models

$$
Z_{p}(g, c, k)=\int D M_{1} D M_{2}-\operatorname{Dm_{p}} \exp \operatorname{Tr}\left(\sum_{i=1}^{p}-M_{i}^{2}-g M_{i}^{4}+c \sum_{i=1}^{p-1} M_{i} M_{i+1}+k M_{p} M_{1}\right)
$$

Firs comideres in Chalhe, Makonx, Mehta (1981) with $k=0$

Solvable

For simplicity comider $p=3$ now.

$$
3 \text { MATRIX MODEL }
$$

- Exercise: Set up the action for this three-matrix model chain problem and implement the HMC algorithm. Explore the limit when the chain is open ie., $\kappa=0$.

Comider $\operatorname{Tr}\left(X_{1,2,3}^{2}\right)$ for $g=1$ and $c=k=0.5$

More Complicated Models

Until now, we have only considered interactions between matrices of form : $\operatorname{tr}(A B)$ which we call quadratic in matrices. Now, we consider quartic interactions of the form: $\operatorname{tr}\left([A, B]^{2}\right)$ for two -matrix model. This will be important ingredient when we consider models which have holographic intupretation -

$$
\mathcal{Z}=\int \Delta x \Delta y e^{-N \operatorname{Tr}\left(x^{2}+y^{2}-g^{2}[x, y]^{2}\right)}
$$

Compute $\operatorname{Tr}([x, y])^{2}$ vs. g and check that it is uso as $g \rightarrow \infty$.
and citations to this.

10 MM CLASS OF MODELS

IKKT model :

$$
\begin{aligned}
& \rightarrow \text { hep-th/9612115 } \\
& z=\int d A d \psi e^{-s}
\end{aligned}
$$

where $S=\frac{1}{4} \operatorname{Tr}\left[A_{\mu}, A_{\nu}\right]^{2}-\frac{1}{2} \operatorname{Tr} \bar{\psi} \Gamma^{m}\left[A_{\mu}, \psi\right]$

$$
\begin{aligned}
& \mu_{1} \nu=1 \ldots 10 \\
& \text { generally } 1 \ldots d
\end{aligned}
$$

Exact Result: Schwinger-Dysan IDENTITY

$$
\frac{\langle S\rangle}{N^{2}-1}=\frac{d}{4}
$$

Let's comider bosomic sector of the novel and perform HMC and compare to the above remit.

Estimate autocorrelation time of the average action computes!

Errors: 1210.3781

SUMMARY
We studied a wide range of matrix models which are used in different areas of Physics ranging from Nuclear Physics, Statistical Mecharis, Supersymanctry, Holography and Quantum Grairty.
We considered some solvable models and checked that Monte carlo reproduces thor results. Then we mores to more complicates ones there exact treatment is not possible.

