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Outline 

★ Introduction to tensor networks and Tensor Renormalization Group 

★ Applications to 2d Ising model & Classical XY model  

★ TRG for non-Abelian SU(2) gauge/Higgs model in two dimensions.  

★ Future directions        
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Introduction 
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Different renormalization group (RG) methods have been introduced over the past 5-6 
decades: 

✦ Kadanoff ’s spin blocking RG [1966] & Wilson’s Numerical RG [1970s]  

✦ Density Matrix Renormalization Group (DMRG) [White, 1992]  
(DMRG is a refined extension to above approach and is well-suited to all 1d systems not only restricted to impurity problems such as 
Kondo problem.) 

✦ Tensor Renormalization Group [Levin and Nave, 2007]  
(Like DMRG breaks down at criticality.) 

✦ Tensor Network Renormalization (TNR) [Vidal and Evenbly, 2015]  
(TNR is an extension of  TRG which qualitatively improves TRG behaviour for systems at criticality and can be used to generate 
MERA tensor networks)



Motivations  
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• Formulating in terms of  tensors can enable us to study systems where the 
usual Monte Carlo (MC) methods fail (sign problem!). In addition, the 
partition function is directly accessible in the thermodynamic limit unlike MC 
methods enabling direct study of  thermodynamic quantities.  

• Provides an arena for studying lower-dimensional critical and gapped systems 
faster and more efficiently than any other numerical method available.  

• Has recently been understood to play an important role in understanding the 
AdS/CFT (i.e. bulk physics from entangled quantum state at the boundary).   



Basic idea
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• Tensor networks approach belong to two categories: Lagrangian and Hamiltonian 
approaches. For ex: 
 

 as approximation to the ground state wave function of  

complicated many-body quantum system with local Hamiltonian. Ex: Matrix Product 
States (MPS) representation. Reduction to O(N) rather than O( ) coefficients.  
 
 

  to approximate in the Lagrangian formulation (like we consider in 

this talk later). 

|Ψ⟩ = ∑
i1,i2,⋯,iN

Ci1⋯iN | i1i2⋯iN⟩

dN

Z = ∑
{Si}

e−βH({Si})



Basic idea
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• As mentioned, for computing “Z”, we have to identify the important states 
and keep them. The effectiveness of  these methods depends on the nature of  
the system. A general random state has a volume scaling of  EE while it is 
different for ground-state sector. For example: we can have gapped and 
critical (gapless) systems and they have following behaviour - 
 
 
 
 Gapped 

Gapless/Critical 

ℋ C(r) S1+1(A)

∼ exp[−r/ξ]

∼ 1/(r)q

∼ L0 ∼ constant

∼ ln(LA)

Same scaling as EE in AdS3

Area-law

Hastings [2007] 



How to identify? 
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• Ground states are not “arbitrary” states in Hilbert space, it has special 
features. Some of  these have been captured by studying the entanglement 
entropy (EE). The region of  Hilbert space that obeys area-law scaling for the 
EE corresponds to a tiny corner (in red). Therefore, lot of  progress have been 
made in many-body physics by computing EE and hence identifying 
important regions of  Hilbert space.  

          Hilbert space - too big!
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if N=  (Avogadro Number), then number of basis states is more 
than atoms in universe! Luckily for us, not all quantum states are 
important! How to find nice ones is a big and interesting problem. 

1023
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  TTN/MERA 
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Disentanglers

(Multi-scale Entanglement Ansatz)



MERA 
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What does MERA capture?
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• Swingle (0905.1317) — MERA on the real line would describes a time slice of  the Poincare 
patch of  AdS3, which corresponds to the hyperbolic plane. So, MERA is the lattice realisation 
of  AdS/CFT! (* Hint from Ryu-Takayanagi formula matching EE*) 

• Beny and others (1110.4872) — MERA on the real line should be interpreted instead as a 
Poincare patch of  dS spacetime 

• Vidal & Milsted (1812.00529) argued that MERA on the real line would describe light sheet 

geometry.  
 



This talk..
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• There exists several algorithms for gapped systems which work well for 
models we want to discuss in this talk. So we just have a simple tree tensor 
network (TTN) and no disentanglers.  We will use a specific algorithm known 
as HOTRG which we now describe.  
 
 



Notation 
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1112.4101



Basic idea - TRG (in 2d)  
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Assuming that the system is represented by a building block i.e. rank-4 tensor given by 
. The first move is to do singular value decomposition (SVD) of  this as shown below.   

This is shown in steps as 

Figure: http://tensornetwork.org/trg/

A0

http://tensornetwork.org/trg/


Basic idea - TRG (2d)  
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Figure: http://tensornetwork.org/trg/

http://tensornetwork.org/trg/


HOTRG (Higher-order TRG) 
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A refined real space coarse graining method similar in spirit to TRG but employs 
higher-order SVD (HOSVD) to minimise the errors due to truncation. First 
introduced in 1201.1144 and is successfully applied to statistical systems in d = 2, 3, 
and recently in 4. Performs better than naive TRG for critical systems. Less complex 
than the TNR methods (best for critical systems!)  



Example - 2d Ising [Square lattice] 
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Exactly solvable system with solution due to Onsager [1944], where the 
logarithm of  the partition function is given by:  

And has singularity (phase transition) at:  

We apply HOTRG to this system and match to known analytical results as  a 
check. 

f(�) = � 1

�

 
ln(2) +

1

8⇡2

Z 2⇡

0

Z 2⇡

0
ln
h
2 cosh2(2�)� sinh(2�) cos(�1)� sinh(2�) cos(�2)

i
d�1d�2

!

Tc =
2

ln(1 +
p
2)

= 2.26918531421 =) �c ⇡ 0.440687



Example - 2d Ising [Square lattice] 
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The fundamental tensor (first step in the tensor computations) can be written 
down as: 

                                               

with  given by a  matrix: 

                                   

This simple spin model case does not require any initial truncation of  the tensor. 
 can also be modified to include  to study model in magnetic field.              

Tabcd = WiaWibWicWid

W 2 × 2

Wia =
cosh(β) sinh(β)

cosh(β) − sinh(β)

W h



Example - 2d Ising [Square lattice] 
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We can carry out the first two iterations of  coarse-graining exactly (first shown 
below), however we truncate to  from the third iteration onwards.  χ = 18

22
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State-of-the-art numerical result   
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• Time: 20-25 seconds on a modern laptop ( ) 

• For Python notebook check: https://github.com/rgjha
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Additional remark
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Tensor network (TN) approach gives direct access to the canonical partition function 
unlike Monte Carlo methods. This has several advantages. In cases where exact form of  
Z is unknown, an educated guess could have been made about the closed form of  Z (or 
its logarithm) comparing the results from TRG in the thermodynamic limit (i.e. on a 
lattice of  size ).   

This has also been useful for exploring the applications of  tensor networks in case of  
supersymmetric gauge theories since Z under some appropriate boundary conditions 
gives well-known ‘Witten-index’. For ex: see 1801. 04183 which studies two-dimensional 
lattice = 1 Wess–Zumino model using TNs. This is more involved that what we discuss 
in this talk because of  “fermions”. But there does exists tensor networks methods for 
them as well. 

250 × 250

𝒩



Classical XY model  
   2004.06314   J. Stat. Mech. (2020) 083203 

21

Simplest spin model with continuous symmetry O(2) [h=0]  in two dimensions. The 
nearest neighbour Hamiltonian is given by:  

                                    

In order to construct the tensor representation, we decompose the Boltzmann weight 
(for say h=0) using Jacobi-Anger expansion as: 

                                  

where,  is the modified Bessel function of  first kind.   

ℋ = − J∑
⟨ij⟩

cos(θi − θj) − h∑
i

cos θi

exp(β cos(θi − θj)) = I0(β) +
∞

∑
ν=−∞,≠0

Iν(β)eiν(θi−θj)

Iν



                             Classical XY model 
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     The partition function can then be written as:  

                                

     By integrating over , we obtain the initial tensor for XY model    

                                    

Z = ∫ ∏
i

dθi∏
νij,μi

Iνij
(β)Iμi

(βh)eiνij(θi−θj)+iμiθi

dθi

Tijkl = Ii(β)Ij(β)Ik(β)Il(β)Ii+k−j−l(βh)

i j

k

l



                                Truncation step in TRG 
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Almost all TRG computation needs truncation of  the states.  

For ex: the indices  ideally runs from . For numerical implementation, we have to 
truncate the indices such that it only runs in integer steps from  passing through 0.                                

Therefore, in the diagram below  runs from -26 to 26  with  

                                    

Needs about ~170 Gb of  memory since we need to  

at least store at least  elements!  

  

νij, −∞ to ∞
−χ/2 to χ/2

i, j, k, l χ = 53

Tijkl = Ii(β)Ij(β)Ik(β)Il(β)Ii+k−j−l(βh)

χ6

i j

k

l



                             Classical XY model 

24

This then leads to the partition function as: 

                                                                                  

from which the magnetisation can be computed as: 

                                                                                                                                                                                                                                              

         

Z = tTr∏Tijkl

M =
−∂F
∂h

=
1
β

∂ ln Z
∂h

= tTr( Ii(β)Ij(β)Ik(β)Il(β)
Ii+k−j−l−1(βh) + Ii+k−j−l+1(βh)

2 ) .



Continued..
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The way we compute magnetisation using tensor networks is shown 
below:  

      

  

i i

j

j

i′� i′�

k k

l
l

k′� k′�

j′�

j′�

l′�
l′�

"#$%& = Ii(β)Ik(β)Ij(β)Il(β)Ii+j−k−l(βh)

"̃#$%& = Ii(β)Ik(β)Ij(β)Il(β)(
Ii+j−k−l−1(βh) + Ii+j−k−l+1(βh)

2 )

i

j

k

l

= M

Orange blob is the impure or ‘observable’ tensor.  The denominator is 
just the contracted usual network which gives “Z”. 
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Taking derivative of  magnetisation for small variation in magnetic field, we 
compute the susceptibility (right) for range of    and take the limit of  vanishing 
field.   

      

  

h

h = 1.5 × 10−7
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Taking the limit , we obtain the critical temperature of  0.89290(5) which is 
consistent with the most precise MC results available in literature. This result can be 
further improved using larger bond dimension . It is known that in XY model 
correlation length increases exponentially as we approach . Already at , 
the correlation length as noted in 1907.04576 is more than thousand lattice sites. 
Precise MC results used a square lattice of  size  while we used a lattice 

.  

h → 0

χ
T = Tc T ≈ 0.95

216 × 216

250 × 250

h = 1.5 � 10�7

Tcrit. = 0.92150(25)
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T

�

Figure 4: A representative example of the determination of the critical temperature for a given

magnetic field. The vertical shaded band denotes the error in the estimate of the critical tem-

perature.

Method Year System Size Tcritical

Monte Carlo [21] 1992 29 ⇥ 29 0.89400(500)

HTE [22] 1993 – 0.89440(250)

Monte Carlo [23] 1995 28 ⇥ 28 0.89213(10)

Monte Carlo [24] 2005 211 ⇥ 211 0.89294(8)

HTE [25] 2011 – 0.89286(8)

Monte Carlo [15] 2012 216 ⇥ 216 0.89289(5)

Monte Carlo [26] 2013 29 ⇥ 29 0.89350(10)

Higher-order TRG [7] 2013 240 ⇥ 240 0.89210(190)

Uniform MPS [8] 2019 – 0.89300(10)

Higher-order TRG [This work] 2020 250 ⇥ 250 0.89290(5)

TN

Table 1: The estimate of the temperature for the BKT transition in classical XY model with

different methods. The three most recent estimates have all been done using real-space renor-

malization with tensor networks (TN).

9



           2d non-Abelian gauge Higgs (NAGH) model 
                   A Bazavov, S Catterall, RGJ, J Unmuth-Yockey, Phys. Rev. D 99, 114507 (2019), 1901.11443
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The lattice action for SU(2) is given by:  
                                             

where  is the gauge coupling and  is the matter coupling. We have fixed to unitary 
gauge as used in several previous works by Greensite et al. [Also Osterwalder-Seiler-
Fradkin-Shenker]. 

We expand the Boltzmann weights in terms of  characters (called character expansion).  
Writing, , we have for gauge piece:  

                                               

S = −
β
2

Re Tr□ −
κ
2

Re TrU

β κ

S = Sg + Sκ

e−Sg = ∏
x

∑
r

Fr(β)χr(UUU†U†)



                 Link (A) and Plaquette (B) tensors                       
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With the knowledge of  these two tensors, one can construct the fundamental 
tensor.  

1901.11443

A(rlmlamlb)(rrmramrb)(κ) =
1
drr

rr+rl

∑
σ=|rr−rl|

Fσ(κ)Crrmrb
rlmlbσ(mrb−mlb) × Crrmra

rlmlaσ(mrb−mlb) .

B(rlmlamlb)(rrmramrb)(ramalmar)(rbmblmbr) = {Fr(β) δmla,mal
δmar,mra

δmrb,mbr
δmbl,mlb

if rl = rr = ra = rb = r

0 else.



                        Representation of  A and B tensors                       

30

1901.11443

malramar

mla
rl

mlb

mblrbmbr

mra
rr
mrb

mla
rl

mlb

mra
rr
mrb

malramar

mblrbmbr

Rank-2 link tensor Rank-4 plaquette tensor



                               Fundamental tensor (T)                       
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1901.11443

Using A and B tensors, we can construct the fundamental tensor of  rank-4 (in 2d).  And 
then combining several copies of   this tensor we can make up the entire lattice. Note 
that we can just same A and B by exploiting the translational invariance of  the lattice. 
If  there were defects in the system, then one would need more such tensors.  

Tijkl(β, κ) = ∑
α,β,γ,δ

Bαβγδ(β)LαiLβjLγkLδl(κ), where Aij = ∑
k

LikLT
kj

Cholesky decom.



                           Coarse graining the TN                         
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1901.11443

We use HOTRG discussed before to implement coarse graining with 
where we have to obviously truncate over the “irreps” of  SU(2) by considering 
upto  which corresponds to initial tensor T of  size . If  we instead 
used , then it would initial tensor T of  size . This truncation over the 
“irreps” depends on the gauge theory and range of  couplings one wants to 
study. Then, Z is given as usual by:  

χ = 50

rmax. = 1 144

rmax. = 1/2 54

Z = tTr∏Tijkl



                               Some Observables                        
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1901.11443

•We compute Polyakov loop in a fixed representation of  SU(2) by 
inserting an appropriate tensor given by: 

 

•Correlation of  Polyakov loop i.e.  to identify 
Higgs-like or confining phases 

Ã(rlmlamlb)(rrmramrb)ij(κ) =
1
drr

1
2 +rl

∑
r′ =| 1

2 −rl|

rr+r′ 

∑
σ=|rr−r′ |

Fσ(κ)Crrmrb
r′ (mlb+i)σ(mrb−mlb−i)C

rrmra
r′ (mla+j)σ(mrb−mlb−i)C

r′ (mlb+i)
rlmlb

1
2 i

Cr′ (mla+j)
rlmla

1
2 j

.

⟨P(0)P†(r)⟩ = C(r)



                                 Exact results for                     β = 0
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1901.11443

For , we can write exact value of  the Polyakov loop in terms of  Bessel  
functions.  This provides a simple check of  the tensor formulation. The exact 
expression is:   

β = 0

⟨P⟩ = 2 ( I2(κ)
I1(κ) )

Nτ

,



                          Check: Comparison with MC                
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We compute some observables to compare the tensor network results to MC. 
On the left we show  and on the right the second 

derivative. We also measure average plaquette and see agreement with MC 
results [black markers].  

⟨Lϕ⟩ =
1
V

−∂ ln Z
∂κ

= ∑
x,μ

TrUx,μ



                                           Results                 
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κ = 0.5 κ = 2

Polyakov loop correlator is given by, . This also provides a 
measure of  monitoring confinement when  (the slope gives , string tension). 
In a Higgs phase, it is constant and independent of  . 

We show the results for correlator in two phases separated by cross-over at around 
. The left shows the confining phase while for the one on the right a string 

breaking occurs and it goes to Higgs phase quickly for large lattices. Results are 
consistent with MC study done recently in 1402.7124 

C(r) = exp(−βV(r))
V ∝ r σ

r

κ ≈ 1.4



                                 Future directions                  
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• Two-dimensional Principal Chiral model [No tensor network study yet!]  

• Computing Witten index from Z for supersymmetric gauge theories 

• Classical Ising Model with magnetic field and exact form for canonical partition 
function “Z”. 

• Understanding the entanglement entropy for 2d NAGH model. HOTRG 
algorithms have been used to compute Renyi/Von Neumann entropy for several 
systems (see 1703.10577)  

• Formulating tensor network for SU(N) gauge/Higgs system for 2d with N > 2? 



38

  THANK YOU!


