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Context: Why lattice supersymmetry
Lattice discretization provides non-perturbative,

gauge-invariant regularization of gauge theories

We’ve discussed (in previous talks ?) many ways lattice studies
can improve our knowledge of strongly coupled field theories

We can imagine many potential susy applications, including
Compute Wilson loops, spectrum, scaling dimensions, etc.,

complementing perturbation theory, holography, bootstrap, . . .

Further direct checks of conjectured dualities

Validate or refine AdS/CFT-based modelling
(e.g., QCD phase diagram, condensed matter systems)
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can improve our knowledge of strongly coupled field theories

We can imagine many potential susy applications, including
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complementing perturbation theory, holography, bootstrap, . . .

Further direct checks of conjectured dualities

Validate or refine AdS/CFT-based modelling
(e.g., QCD phase diagram, condensed matter systems)

Many ideas probably infeasible ; relatively few have been explored.
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Context: Why not lattice supersymmetry

There is a problem with supersymmetry in discrete space-time
Recall supersymmetry extends Poincaré symmetry

by spinorial generators QI
α and Q

I
α̇ with I = 1, · · · ,N

The resulting algebra includes
{

Qα,Qα̇

}
= 2σµαα̇Pµ

Pµ generates infinitesimal translations, which don’t exist on the lattice
=⇒ supersymmetry explicitly broken at classical level

Explicitly broken supersymmetry =⇒ relevant susy-violating operators
(typically many)

Fine-tuning their couplings to restore supersymmetry
is generally not practical in numerical lattice calculations
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Special supersymmetric theories

There are certain theories where we can exactly preserve a subset of
SUSY algebra based on the idea of twisting.

Maximal (N = 4) supersymmetric Yang–Mills (SYM)
The only known 4d system with a supersymmetric lattice formulation

Remainder of talk will focus on recent progress with lattice N = 4 SYM

N = 4 SYM is a particularly interesting theory
—Context for development of AdS/CFT correspondence

—Important for studies of Quark-Gluon Plasma (QGP) at strong
couplings

—Arguably simplest non-trivial field theory in four dimensions
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Exact susy on the lattice: N = 4 SYM

Basic features:

SU(N) gauge theory with four fermions ΨI and six scalars ΦIJ,
all massless and in adjoint rep.

Action consists of kinetic, Yukawa and four-scalar terms
with coefficients related by symmetries

Supersymmetric: 16 supercharges QI
α and Q

I
α̇ with I = 1, · · · ,4

Fields and Q’s transform under global SU(4) ' SO(6) R symmetry

Conformal: β function is zero for any ’t Hooft coupling λ
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Twisted N = 4 SYM
Everything transforms with integer spin under SO(4)tw — no spinors

QI
α and Q

I
α̇ −→ Q, Qa and Qab

ΨI and Ψ
I −→ η, ψa and χab

Aµ and ΦIJ −→ Aa = (Aµ, φ) + i(Bµ, φ) and Aa

The twisted-scalar supersymmetry Q acts as

Q Aa = ψa Q ψa = 0

Q χab = −Fab Q Aa = 0
Q η = d Q d = 0

↖ bosonic auxiliary field with e.o.m. d = DaAa

1 Q directly interchanges bosonic←→ fermionic d.o.f.

2 The susy subalgebra Q2 · = 0 is manifest
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Lattice N = 4 SYM
The lattice theory is very nearly a direct transcription

Covariant derivatives −→ finite difference operators
Gauge fields Aa −→ gauge links Ua

Q Aa −→Q Ua = ψa Q ψa = 0

Q χab = −Fab Q Aa −→Q Ua = 0
Q η = d Q d = 0

Naive lattice action retains same form as continuum action
and remains supersymmetric, QS = 0

Geometrical formulation facilitates discretization
η live on lattice sites ψa live on links
χab connect opposite corners of oriented plaquettes

Orbifolding / dimensional deconstruction produces same lattice system
Raghav G. Jha (Syracuse) Lattice Supersymmetry ** 7 / 23



Five links in four dimensions −→ A∗4 lattice

—Can picture A∗4 lattice
as 4d analog of 2d triangular lattice

—Preserves S5 point group symmetry

—Basis vectors are non-orthogonal
and linearly dependent

S5 irreps precisely match onto irreps of twisted SO(4)tw

5 = 4⊕ 1 : Ua −→ Aµ + iBµ, φ+ iφ
ψa −→ ψµ, η

10 = 6⊕ 4 : χab −→ χµν , ψµ

Raghav G. Jha (Syracuse) Lattice Supersymmetry ** 8 / 23



Twisted N = 4 SYM on the A∗4 lattice
—We have exact gauge invariance

—We exactly preserve Q, one of 16 supersymmetries

—The S5 point group symmetry
provides twisted R & Lorentz symmetry in the continuum limit

The high degree of symmetry has important consequences
Moduli space preserved to all orders of lattice perturbation theory

−→ no scalar potential induced by radiative corrections

β function vanishes at one loop in lattice perturbation theory

Real-space RG blocking transformations preserve Q and S5

Only one marginal tuning to recover Qa and Qab in the continuum

The theory is almost suitable for practical numerical calculations. . .
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New development (arXiv:1505.03135)

Scalar potential softly breaks Q supersymmetry

Plaquette determinant can be made Q-invariant

Basic idea: Modify the equations of motion −→ moduli space

d(n) = D(−)
a Ua(n) −→ D(−)

a Ua(n) + G
∑
a 6=b

[detPab(n)− 1]

Produces much smaller violations of QWard identity 〈sB〉 = 9N2/2
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Aside: Public code for lattice N = 4 SYM

The lattice action is obviously very complicated

(For experts: &100 inter-node data transfers in the fermion operator)

To reduce barriers to entry our parallel code is publicly developed at
github.com/daschaich/susy

Evolved from MILC lattice QCD code, presented in arXiv:1410.6971
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Physics result: Static potential is Coulombic at all λ

Static potential V (r) from r × T Wilson loops: W (r ,T ) ∝ e−V (r) T

Fit V (r) to Coulombic
or confining form

V (r) = A− C/r

V (r) = A− C/r + σr

C is Coulomb coefficient
σ is string tension

Fits to confining form always produce vanishing string tension σ = 0

To be revisited with the improved action
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Coupling dependence of Coulomb coefficient
Perturbation theory predicts C(λ) = λ/(4π) +O(λ2)

AdS/CFT predicts C(λ) ∝
√
λ for N →∞, λ→∞, λ� N

Left: Agreement with perturbation theory for N = 2, λ . 2

Right: Tantalizing
√
λ-like discrepancy for N = 3, λ & 1

No visible dependence on (unimproved) soft Q breaking
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Sixteen supercharge supersymmetric QM

SYM consisting of sixteen supercharges in 1d at low temperatures with
large N is conjectured to be dual to a black hole with N units of charge
at same temperature. Energy of the black hole has been computed in
SUGRA :

ε ∼ 7.41N2t14/5

with ε = E/λ1/3 and t = T/λ1/3.

This has been checked on the SYM side with great success upto first
order corrections in α

′
. In fact, leading order in α

′
is a prediction of

lattice simulations.
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Figure: Masanori Hanada, Yoshifumi Hyakutake, Jun Nishimura, and Shingo Takeuchi,
Phys. Rev. Lett. 102, 191602 (2009).

Leading order behavior was also confirmed using lattice methods by S.Catterall and
T.Wiseman (Phys. Rev. D78, 041502 (2008). [arXiv:0803.4273 [hep-th]])

Polyakov line in 1d case is non-vanishing even at low T, no phase transition in 1d,
as predicted by the gauge/gravity correspondence. There is only single deconfined
phase.
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Revisiting p=0 with improved action and public code
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N = (8,8) SYM in two dimensions
Unlike 1-d case discussed before, the maximally supersymmetric
theory in two dimensions has a deconfinement/confinement phase
transition. It is conjectured to be related to a different phase transition
between black hole/black string in the dual supergravity theory.

We construct dimensionless coupling given by λ̂ = λβ2, where
β = aNt . Other dimensionsless quantities related to size of spatial and
temporal directions can be defined as :

rx =
√
λR and rτ =

√
λβ

The energy power law from supergravity calculations is predicted :

ε ∼ N2t3
√
λR ∀ t � 1

with, ε = E/
√
λ, t = T/λ1/2 defined as the dimensionless energy and

temperature respectively.
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Recapitulation
Lattice supersymmetry is both enticing and challenging

N = 4 SYM is practical to study on the lattice
thanks to exact preservation of susy subalgebra Q2 = 0

The theory is simple; the lattice action is complicated
−→ Public code to reduce barriers to entry

The static potential is always Coulombic
For N = 2 C(λ) is consistent with perturbation theory
For N = 3 we may be seeing behavior predicted by AdS/CFT

Many more directions are being — or can be — pursued
I N = 4 anomalous dimensions, e.g. for Konishi operator
I Understanding the (absence of a) sign problem
I Systems with less supersymmetry, in lower dimensions,

including matter fields, exhibiting spontaneous susy breaking, . . .
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Numerical complications
1 Complex gauge field =⇒ U(N) = SU(N) ⊗ U(1) gauge invariance

U(1) sector decouples only in continuum limit

2 Q Ua = ψa =⇒ gauge links must be elements of algebra
Resulting flat directions required by supersymmetric construction

but must be lifted to ensure Ua = IN +Aa in continuum limit

We need to add two deformations to regulate flat directions

SU(N) scalar potential ∝ µ2∑
a
(
Tr
[
UaUa

]
− N

)2

U(1) plaquette determinant ∼ G
∑

a 6=b (detPab − 1)

Scalar potential softly breaks Q supersymmetry
↖susy-violating operators vanish as µ2 → 0

Plaquette determinant can be made Q-invariant (new development)
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Interesting open problem - Free energy of N = 4 SYM

The free energy was calculated at strong coupling using AdS/CFT
correspondence in [Gubser et. al, Phys.Rev. D54 (1996) 3915,
hep-th/9602135]. It was suggested that the leading term in expansion
of F has the form :

F = −f (g2
YMN)

π2

6
N2VT 4

where, f (g2
YMN) is (possibly!) a smooth function which interpolates

between a weak coupling limit of 1 and a strong coupling limit of 3/4.

Through lattice, we can explore the behavior of the free energy at
intermediate couplings which might be useful for determining the exact
form of f (g2

YMN).
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Supplement: The (absence of a) sign problem
In lattice gauge theory we compute operator expectation values

〈O〉 =
1
Z

∫
[dU ][dU ]O e−SB [U ,U ] pfD[U ,U ]

pfD = |pfD|eiα can be complex for lattice N = 4 SYM
−→ Complicates interpretation of

[
e−SB pfD

]
as Boltzmann weight

Have to reweight “phase-quenched” (pq) calculations

〈O〉pq =
1
Zpq

∫
[dU ][dU ]O e−SB [U ,U ] |pfD| 〈O〉 =

〈
Oeiα〉

pq〈
eiα
〉

pq

Sign problem: This breaks down if
〈
eiα〉

pq is consistent with zero
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Illustration of sign problem and its absence
With periodic temporal fermion boundary conditions

we have an obvious sign problem,
〈
eiα〉

pq consistent with zero

With anti-periodic BCs and all else the same
〈
eiα〉

pq ≈ 1
−→ phase reweighting not even necessary

Even stranger
Other 〈O〉pq nearly identical

despite sign problem...

Can this be understood?
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Pfaffian phase dependence on volume and N
No indication of a sign problem with anti-periodic BCs

1− 〈cos(α)〉 � 1 means pfD = |pfD|eiα nearly real and positive
Fluctuations in pfaffian phase don’t grow with the lattice volume
Insensitive to number of colors N = 2, 3, 4
To be revisited with the improved action

Hard calculations
Each 43×6 measurement

required ∼8 days,
∼10GB memory

Parallel O(n3) algorithm
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