- RAGHAV G JHA rjhal @perimeterinstitute. ca
qune 10 \&11, 2020
RPI Cyber Training Schorl [Online via Cisco hebex

Instructions For reading THESE NOTES:
places marked as were Accompanied with online coding

IF YOU WANT THOSE CODES (PYTHON 3). please email me.
GOOD

THESE notes are ar undergraduate LEVEL EXCEPT FEW COMMENTS.

THESE NOTES WERE PREPARED FOR TWO So minutes lecture

Tensor network Approach To
 \& QFT'S

- Exact diagmelization (gring model) for small N.
- Basies of Temor netrootes
- 2d Classicel Ising model \int compare to \& $2 d$ Clasicel XY model others
$0+$ _dependure on time leff
\rightarrow Entanglement Entropy
$\rightarrow 2 d$ ising with $h \neq 0$

Additional Remarks

These will be Hands - on lectures and the flow will be determined accordingly.

You will participate and do the coding exercises on you laptop/PC.

Only need Internet \& Grable Account or your method of coding in Python 3

TENSOR NETWORK APPROACH TO Quantum Many- Body Systems \& QFT'S

Single spin- $\frac{1}{2}$ particle has Hilbert space $H=\mathbb{C}^{2}$ of dimension 2. ' N ' spins have $\mathcal{H}^{(N)}=2^{N}$. Consider a spin chain of $N=30$. The dimension is $=2^{30}=\left(\begin{array}{c}\left(2^{10}\right)^{3} \cong 10^{9} \\ \approx 10^{3}\end{array} . . . ~\right.$

It is impossible to fit this in many modern
day computer l day computer!

But nature is kind
Main message: We done need to Work With entire hilbert space since for most cases - Nature lurks in small small corner of the full space.

Weill see this in detail little later.
Notion of Gapped \& Gapless

$$
\Delta E=\operatorname{infimum~}_{|\psi\rangle \in \mathcal{H} \backslash g}\langle\psi| H|\psi\rangle-E_{0}
$$

in the thermodynamic limit.
If $\Delta E=0 \longrightarrow$ Gapless/critical
$\Delta E \neq 0 \longrightarrow$ Gapped

Gapless models are captured in field theory language by special class of QFT's known as CET's. \longrightarrow conformal field theory.

Weill restrict to aped systems FOR NOW.

Q: How do we identify which corner of hilbert space nature prefers FOR GAPPED SYSTEMS?

A: Look at entanglement Entropy of the quantum state.

Hilbert Space Cartoon
(for local gapped Hamiltonian syskms) with short - range

$S \propto$ Aregion $\rightarrow \begin{array}{r}\text { Area law of } \\ \text { entanglement }\end{array}$ entanglement.
(will discuss later depending or time available).

Small Exercise

Exercise 1: Consider the Hamiltonian of three spins $(N=3)$ quantum Using model given by:

$$
H=\sigma_{1}^{x} \otimes \sigma_{2}^{x}+\sigma_{2}^{x} \otimes \sigma_{3}^{x}+\sigma_{3}^{x} \otimes \sigma_{1}^{x}+h\left(\sigma_{1}^{z}+\sigma_{2}^{z}+\sigma_{3}^{z}\right)
$$

Since $\operatorname{dim}(\mathcal{H})=8$, use exact diagonalization and compute ground state energy for various h.
WE WILL USE GOOGLE COLAB (for all exercises 1)
For large no. of spins say 2d-xy MODEL ON $2^{10} \times 2^{10}$ Lattice, We cant do exact dagonalization a use TN

Now, Generalize to N spins

- Check that we reproduce results for $N=3$.
- Try it out for $N<10$ spins which has $\operatorname{Dim}(H)<1024$.

IMPLEMENTATION IN PYTHON
import numpy as np

Exercise 2: Calculate the trace of product of four random 3×3 matrices using einsum and check that the result agrees with that obtained from np.trace and np.dot. You can construct random matrices using: $\mathrm{A}=\mathrm{np}$. random. rand $(3,3)$

Faster Alternative

$$
\frac{\text { USED BY RESEARCH GROUPS }}{\underset{\operatorname{arxir}}{ } \text { NON } 1402.0939}
$$

Download From:
www. github.com/rgjha/TensorCodes/blob/master/ncon.py From Dropbox Folder..

For ex: $C_{i p}=A_{i j k} B_{p j k}$ is implemented as:

$$
\begin{equation*}
C=\operatorname{ncon}((A, B),([-1,2,1],[-2,2,1])) \tag{II}
\end{equation*}
$$

Exercise 3: Compute the rank-four tensor $A_{r q b a}$ which is equal to $B_{i j k l} C_{j i q r} D_{l k a b}$ using NCON where all indices run from $1 \cdots 3$. Draw a tensor diagram of this contraction. You can choose the tensors to be random like before.

Fundamental Tensor
In 'd' dimensions, the fundamental tensor has total of ' $2 d$ ' legs or indices.

Weill exclusively focus in these lectures on Rd, so it is represented as

Thud or Turd

$$
T_{0}
$$

lrudfb
We'll follow this pattern of indices.

$\cdots-\frac{T_{3}}{3-1}$
$\left(T_{1}\right)_{i j k e}\left(T_{3}\right)_{\rho j k q}$

ExERCISE 4: Execute this using NCON in Single line command.

Ensor Network coarse Graining Algorithms (Two DIMENSIONS)
Since the seminal work of Levin \& Nave (TRG apprach to $2 d$ classical lattice models) dorens of algosithms have yeen introduced to do efricient coarse-graining. We'le un what is called HOTRG (Higher-Order TRG) basev on 1201. 1144 (cond-mat)

Others:
MPS (Matrix Product States), PEPS
TNR (Temor Network Renomalization)
TEER, Gilt-TNR, $\}$ mamy other..

Now consider $T_{1}=T_{2}=T_{3}=T_{4}=T_{f}$
One step of coarse graining:-
Q:
then,

Doing this ' N ' times starting from the fundamental tensor will produce a final lattice volume 4^{N} !

$$
\text { END OF LECTURE } 1
$$

Step 1: Take $T_{\text {initial }}=T_{(n)}$
STEP 2: Combine four of them like

or $\frac{\pi}{2}$ rotation of this.
to get -1

STEP 3: Combine $-1 \&-2$ and $-3 \&-4$ to construct a matrix. $(-1 \otimes-2)$, $(-3 \otimes-4)$ and take SVD of this matrix.
STEP 4: Take two Tinitial tensors and do $\partial^{\prime}<\cdots t_{\alpha^{\prime}}^{\prime} \cdots \alpha^{\prime}$ to get $T_{(n+1)}$

C HOMEWORK. EXercise
 $\overleftarrow{\pi / 2}$

(See last page)

$$
?
$$

Few Comments:
SVD is the most expensive part of the computation. Going to large values of D^{\prime} depends on available memory.
After every coarse-graining step, we normalize the tenon by its norm or biggest element. (see what happens if you don't)
There is error introduced at each step due to truncation over the singular values in SUD.

$\frac{2 d \text { CLASSICAL uSING MODEL }}{\text { (without proof for now!) }}$
It can be shown that the fundamental tensor (T) for this case can be written as:

$$
T_{i j k l}=W_{p i} W_{p j} W_{p j k} W_{p l}
$$

where,

$$
\begin{aligned}
& Z=\operatorname{tr}\left(\pi^{N} \tau\right)_{\uparrow} \quad W=\left[\begin{array}{ll}
\sqrt{\cosh \beta} & \sqrt{\sinh \beta} \\
\sqrt{\cosh \beta} & -\sqrt{\sinh \beta}
\end{array}\right] \\
& \begin{array}{l}
\text { Transfer } \\
\text { matrix. and, } Z=t T_{r} \prod_{n}\left(T_{i j k e}\right)_{n} \quad \begin{array}{c}
n \rightarrow \text { sites of } \\
\text { lattice }
\end{array}
\end{array}
\end{aligned}
$$

ONSAGER'S SOLUTION (Square lattice)
for $k_{B}=J=1$, we have

$$
\beta_{c} \approx \frac{1}{2.269185} \cong 0.4407
$$

Exact free energy is known from Onsager [1944] solution.

Compute " f "
Weill reproduce β_{c} using tensor

Write a function To do one-step OF COARSE - GRAINING
$f:$ input $\rightarrow T$
output $\rightarrow T^{\prime}$ and norm
Another Function For constructing $T_{\text {initial }}$ taking ' β ' as INPUT.

Free Energy density vs. β plot
Since we normalize the tenor at each step, we cannot compute

$$
f=-T \ln Z_{\text {end of coarse graining }}
$$

(we need to use "norm" at each step).
Additional details: arXir 2004.06314
Appendix.
This is already computed in the code

OTHER ObSERVAbLES

$$
\begin{gathered}
E=-\frac{\partial \ln z}{\partial \beta}=\frac{\partial^{2} \ln 2}{\partial \beta^{2}}-\text { (1) } \\
S=\text { Seat } \cong
\end{gathered}
$$

PLAN: Compute ' f ' for range of β and then do numerical integration one by one to get (1) \& (2)

USE: numpy's gradient function ie

$$
E=n p \cdot \operatorname{grad}(f, d b) \text {; where } d b=\beta_{i+1}-\beta_{i}
$$

Plot \& compare

Plot f, E, S vs. β and determine β_{c} from the peak of S vs. β plot. Compare it to exact value l

Refer arxiv 1903.09650 and see Figure (3). if intersted.

Id Classical X-Y model
arXir 2004.06314
Consider a square lattice as this page witt a spin on each lattice site free to rotate in the $x-y$ plane. The next- sins) neighbor Hamiltonian is given by:

$$
H=-J \cos \left(\theta_{i}-\theta_{j}\right) \longrightarrow O(2) \text { symmetry }
$$

We can also consider applying external magnetic field ' h ' such as breaks O(2)

$$
\mu=-J \cos \left(\theta_{i}-\theta_{j}\right)+h \cos ^{\cos ^{2}} \theta_{i}
$$

Why Tensor Networks ??
Using efficient coare-graining algorithms we can do Physics directly in the thermodynamic limit Say $2^{50} \times 2^{50}$ lattice on simple computers Which even parallelizeD Monte Carlo methods usually are unable to achieve!!

Skipping lot of details, we can write down the initial tensor (T) for this model and compute free energy, magnetization $\in<c$.
\Perp
only sketch not
compute. \longrightarrow see paper or $\begin{aligned} & \text { Github for details. }\end{aligned}$

Fundamental Tensor $\leadsto \begin{gathered}\text { Skipping } \\ \text { detail }\end{gathered}$

$$
T_{i j k e}=\sqrt{I_{i}(\beta) I_{j}(\beta) I_{k}(\beta) I_{l}(\beta)} I_{i+k-j k}(\beta h)
$$

If $h=0, I_{i+k-j-l}(0)$ is only non-zero when $i+k=j+l$. St becomes

$$
\begin{aligned}
& T_{i j k e}=\sqrt{I_{i}(\beta) I_{j}(\beta) I_{k}(\beta) I_{l}(\beta)} \delta_{i+k}^{j+\ell}
\end{aligned}
$$

Write Tensor Network For $2 d$ xy
\& COMPUTE $f, \frac{\partial f}{\partial \beta}, \frac{\partial^{2} f}{\partial \beta^{2}}$

Determining $T_{\text {lie }} T_{\text {BLt }}$
Compute magnetization by introducing external field ' h ' and compute susceptibility..
Jake the $h \rightarrow 0$ limit and reed off $T_{B K T}$.

But, we have only computed things related to "Z" up to now. How do we compute an observable say $\langle 0\rangle$?

MAGNETIZATION

Write Non to compute 'm'
Something like:

$$
M=\frac{n \operatorname{con}((\widetilde{T}, T, T, T),[\cdots \cdots])}{n \operatorname{con}((T, T, T, T),[\ldots \uparrow \ldots \ldots])}
$$

Instead of inserting this impure tensor (orange) we could have computer "M" just by taking numerical derivative of " f " vs. " h ", but it is both cumbersome \& prone to numerical errors..

Entanglement Entropy (EE)
Consider a state describing two-subsyblems $A \& B$ i.e $\left|\psi_{A B}\right\rangle=\left|\phi_{A}\right\rangle\left|\phi_{B}\right\rangle$. If this state is separable, then the reduces density matrix $f_{A}=T_{B}\left|\psi_{A B}\right\rangle\left\langle\psi_{A B}\right|$

$$
=\left|\phi_{A}\right\rangle\left\langle\phi_{A}\right|
$$

And entropy is zen! $\left(S_{A}=0\right)$
 If this is at $T=0$, then $S_{A}=S_{B}$ and hence $S_{B}=0$.
Nom-zero entropy signals \leadsto Entanglement!
Bipartite or Van Neunawn entropy
\leadsto with an examp

Won Newman Entropy (1927)

$$
\begin{aligned}
S & =-\operatorname{Tr} \rho \log _{2}(\rho) \\
& =-\sum_{i} \rho_{i} \log _{2} \rho_{i}
\end{aligned}
$$

In a random assemble, each state is equally probable. So if $\operatorname{dim}(\mu)=d$, then all ' f_{i}^{\prime} are same ie $\frac{1}{d}$
(Page 15 of Preskill's Ph 229 notes Ch. 5)

Approx time with
aline coding aline coding $\cong 3$ hus.

