Testing holographic principle using lattice simulations

Raghav G. Jha Syracuse University

Lattice 2017

with Simon Catterall, David Schaich and Toby Wiseman

1. Motivation

- **2**. Lattice construction of \mathcal{N} =4 SYM
- 3. Gauge/Gravity duality
- 4. Results

Motivation

Study maximally supersymmetric Yang-Mills (SYM) in (p + 1) dimensions for p < 3. This is conjectured to be dual to Type IIA/B superstring theory containing stack of N Dp-branes in the *decoupling limit*.

- ⇒ At low temperatures (strong coupling), there is a dual supergravity theory (as low-energy description of Type II string theory).
- ⇒ We want to use gauge/gravity duality to understand it from SYM theory.
- \Rightarrow In this case, the gauge theory is strongly coupled and we use *lattice* to study this system.

In this talk, I will focus on the p=1 case

Lattice construction of \mathcal{N} =4 SYM

SUSY on the lattice

Supersymmetry extends Poincaré symmetry adding spinorial generators Q and \overline{Q} to translations, rotations, boosts

The algebra includes $\{Q, \overline{Q}\} \sim P_{\mu}$

SUSY on the lattice

Supersymmetry extends Poincaré symmetry adding spinorial generators Q and \overline{Q} to translations, rotations, boosts

The algebra includes $\{Q, \overline{Q}\} \sim P_{\mu}$

Fortunately, there are certain constructions where we can exactly preserve a subset of SUSY algebra on the lattice based on *twisted* and orbifold constructions. See [0903.4881] for review.

Requirements : Enough supercharges in the continuum (at least 2^D , where D is space-time dimensions)

Unique features :

- \Rightarrow Single supercharge exactly preserved on the lattice in four dimensions.
- ⇒ Gauge symmetry, © nilpotent symmetry, *S*₅ point group symmetry.

$\mathcal{N} = 4 \; \mathrm{SYM}$

—The only known 4d theory with a supersymmetric lattice formulation. Also the simplest non-trivial field theory in four dimensions without gravity.

--Context for development of AdS/CFT correspondence in large-N limit at strong couplings

SU(*N*) gauge theory with four fermions Ψ^{I} and six scalars Φ^{IJ} , all massless and in adjoint rep.

Supersymmetric: 16 supercharges Q_{α}^{I} and $\overline{Q}_{\dot{\alpha}}^{I}$ with $I = 1, \dots, 4$. Fields and *Q*'s transform under global SU(4) \simeq SO(6) R-symmetry

Conformal: β function is zero for any 't Hooft coupling $\lambda = g_{YM}^2 N$

 $SO(4)_{tw} \equiv \text{diag}\left[SO(4)_{euc} \times SO(4)_R\right] \quad ; \quad SO(4)_R \subset SO(6)_R$

The 16-real components of the spinors in $\mathcal{N} = 4$ SYM fill up the Dirac-Kähler multiplet :

$$\begin{pmatrix} Q_{\alpha}^{1} & Q_{\alpha}^{2} & Q_{\alpha}^{3} & Q_{\alpha}^{4} \\ \overline{Q}_{\dot{\alpha}}^{1} & \overline{Q}_{\dot{\alpha}}^{2} & \overline{Q}_{\dot{\alpha}}^{3} & \overline{Q}_{\dot{\alpha}}^{4} \end{pmatrix} = \mathbb{Q} + \gamma_{\mu} \mathbb{Q}_{\mu} + \gamma_{\mu} \gamma_{\nu} \mathbb{Q}_{\mu\nu} + \gamma_{\mu} \gamma_{5} \mathbb{Q}_{\mu\nu\rho} + \gamma_{5} \mathbb{Q}_{\mu\nu\rho\sigma} \\ \longrightarrow \mathbb{Q} + \gamma_{a} \mathbb{Q}_{a} + \gamma_{a} \gamma_{b} \mathbb{Q}_{ab} \\ \text{with } a, b = 1, \cdots, 5 \end{cases}$$

Q's transform with integer spin under the "twisted rotation group".

Twisting and repackaging gives a nilpotent, scalar supercharge [©] which can be exactly preserved on the lattice.

7

Start from a 5d setup

$$Q \text{ and } \overline{Q} \longrightarrow \mathbb{Q} + \mathbb{Q}_a + \mathbb{Q}_{ab}$$
$$\Psi \text{ and } \overline{\Psi} \longrightarrow \eta, \ \psi_a \text{ and } \chi_{ab}$$
$$A \text{ and } \Phi \longrightarrow \mathcal{A}_a \text{ and } \overline{\mathcal{A}}_a$$

Everything transforms with integer spin under $SO(4)_{tw}$ — no spinors. Then under dimensional reduction :

where, a b runs from 1 \cdots 5 and μ from 1 \cdots 4

Code for supersymmetric construction of $\mathcal{N} = 4$ SYM evolved from MILC lattice QCD code and is hosted on GitHub.

Download, Fork, Contribute https://github.com/daschaich/susy

Gauge/Gravity duality

Gravitational theory

Weakly coupled (low energy) string theory Stack of N Dp-branes, N units of charge at temperature T

Gauge theory

16 supercharge SYM theory in D = p+1 dimensions SU(N) gauge group with large N, strongly coupled at temperature T

- ⇒ Gravity has two different phases : Homogeneous black string & localized black hole with a first-order phase transition between them.
- ⇒ Gauge theory *should* have a deconfinement phase transition where deconfined phase is dual to - localized black hole phase *and* confined phase is dual to - homogeneous black string. Both phases have *different* thermodynamic behavior. Valid only at strong coupling and large-N.
- \Rightarrow <u>Our aim</u>: Confirm that the *map* is consistent through lattice calculations.

2d SYM - setting up

- \Rightarrow Dimensionally reduce the 4d theory to two dimensions.
- ⇒ We can construct dimensionless extents in two directions as : $r_x = \sqrt{\lambda}L$, $r_\tau = \sqrt{\lambda}\beta$. Dimensionless temperature, $t = 1/r_\tau$. Strong couplings implies low temperatures.
- ⇒ At high temperatures and $r_x \gg r_\tau$, there is a third (GWW) and closely separated second order phase transition. When coupling is increased to $r_\tau \gg 1$ and $\alpha = r_x/r_\tau = TL \approx 0(1)$, the gravity description kicks in and we have a first-order phase transition.

 \Rightarrow Gravity predicts the transition to occur across : $r_x^2 = c_{\text{grav}} r_\tau$.

Results

Deconfinement transition

 $r_x^2 > c_{\text{grav}} r_{\tau}$ corresponds to the homogeneous phase. The order parameter for the phase transition is the Wilson line.

Unitarized Wilson line phases - localized and uniform

D1 gravity (homogeneous phase) - thermodynamics

t

D0 gravity (localized phase) - thermodynamics

- ⇒ Sixteen supercharge SYM theory is now possible to study at large N using twisted lattice construction in various dimensions.
- ⇒ Positive evidence from lattice simulations of strongly coupled SYM theory at large N that gauge/gravity duality might be correct.

Thank you.

Funding and computing resources

20

Other details (if needed)

- ⇒ No sign problem with anti-periodic boundary conditions for fermions (which we use here).
- \Rightarrow The U(1) mode is truncated from the start, but, restored at sufficiently large N. See talk by Joel Giedt @ Lattice 2017.
- ⇒ To regulate SU(N) flat directions, we added a small mass term μ . We extrapolated the energy density to the $\mu \rightarrow 0$ limit.
- ⇒ Soft-mass term added to ensure that center symmetry is completely broken along reduced directions.
- ⇒ The breaking of supersymmetry is within few % with the largest N we simulate.