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Outline

Motivation and possibilities
Two dimensional N = (2,2) SYM – supersymmetry breaking
Holographic connection - two and three dimensional SYM (16
supercharges)
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Why lattice supersymmetry (SUSY) ?

Discretization on the lattice furnishes gauge-invariant regularization of
gauge theories and provides non-perturbative insights into

Gauge/gravity (AdS/CFT) duality - potential non-perturbative
definition of string theory
Finite N regime and large N limit of supersymmetric theories.
Confinement, phase transitions, symmetry breaking and conformal
field theories.
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Lattice SUSY : Problem and resolution

Problem
Supersymmetry generalizes Poincaré symmetry by adding spinorial
generators Q and Q̄ to translations, rotations, boosts

The algebra includes QQ̄+ Q̄Q = 2σµPµ,

Pµ generates infinitesimal translations, which don’t exist on the lattice.
Supersymmetry explicitly broken at the classical level.

Solution
Preserve a subset of SUSY algebra exactly on the lattice. Possible for
theories with Q ≥ 2D. For ex : N = 4 supersymmetric Yang-Mills
(SYM). Methods are based on orbifold construction and topological
twisting. I will focus only on the twisted construction in this talk.
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Lattices in various dimensions

THEORY R-SYMMETRY LATTICE CONSTRUCTION ?

d = 2,Q = 4 SO(2)
⊗
U(1) X

d = 2,Q = 8 SO(4)
⊗
SU(2) X

d = 2,Q = 16 SO(8) X

d = 3,Q = 4 U(1)
d = 3,Q = 8 SO(3)

⊗
SU(2) X

d = 3,Q = 16 SO(7) X

d = 4,Q = 4 U(1)
d = 4,Q = 8 SO(2)

⊗
SU(2)

d = 4,Q = 16 SO(6) X

5



SUSY breaking : Witten index

To understand susy breaking non-perturbatively, Witten introduced
index, W. As it turns out, W can be written as,

W =
∫
PBC

D(· · · )e−S

don’t have a way of evaluating this using simulations

Alternatively : Look for ground state energy as order parameter for
breaking
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N = (2,2) SYM in d=2

The action of continuum N = (2, 2) SYM takes the following Q-exact
form after topological twisting

S = N

2λQ
∫
d2xΛ,

where
Λ = Tr

(
χµνFµν + η[Dµ,Dµ]− 1

2ηd
)
,

and λ = g2N is the ’t Hooft coupling.
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The nilpotent supersymmetry transformations associated with the
scalar supercharge Q are given by

Q Aµ = ψµ,

Q ψµ = 0,
Q Aµ = 0,
Q χµν = −Fµν ,
Q η = d,

Q d = 0.
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The four degrees of freedom appearing in this theory are just the
twisted fermions (η, ψµ, χµν) and complexified gauge field Aµ. The
complexified field is constructed from the usual gauge field Aµ and the
two scalars Bµ present in the untwisted theory: Aµ = Aµ + iBµ. The
twisted theory is naturally written in terms of the complexified
covariant derivatives

Dµ = ∂µ +Aµ, Dµ = ∂µ +Aµ, (1)

and complexified field strengths

Fµν = [Dµ,Dν ], Fµν = [Dµ,Dν ]. (2)
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The action can be written as, S = SB + SF ,where the bosonic action is

SB = N

2λ
∑

n
Tr
(
−Fµν(n)Fµν(n) + 1

2[Dµ,Dµ]2
)
,

and the fermionic piece

SF = N

2λ
∑

n
Tr
(
− χµν(n)D[µψν](n)− η(n)Dµψν(n)

)
.

Also an additional mass term (breaks Q supersymmetry)

Ssoft = N

2λµ
2∑

n,µ
Tr
(
Uµ(n)Uµ(n)− IN

)2
,

10



Fields on the lattice
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Extrapolations [PRD 97, 054504]
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Supersymmetry breaking

Calculate the ground state energy density in the limit β →∞ ?
(why not just do T= 0 calculation)
Need to use small mass term µ to control flat directions, which we
extrapolate to zero after doing continuum extrapolation (a → 0).
Upper bound on energy density EVAC

N2λ = 0.05(2), statistically
consistent with zero.

[Similar study done earlier by Kanamori, Sugino and Suzuki based on
A-twist Sugino’s action]
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Applications to holography - gauge/gravity

Original AdS/CFT correspondence
4D N = 4 U(N) super-Yang-Mills theory associated with N D3-branes,
is dual to Type IIB string theory on AdS5 × S5 in the large N limit.

More general holographic dualities in lower dimensions
Maximally supersymmetric YM in p+ 1 dimensions dual to Dp-branes
At low temperatures, and in the decoupling limit : dual description in

terms of black holes in Type II A/B supergravity
Decoupling limit: N →∞ and t = T/λ

1
3−p � 1
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Maximal SYM for p < 3

Dimensionally reduce lattice N = 4 SYM along (3-p) spatial
directions.
Dimensional reduction : A∗4 → A∗p+1 giving a skewed torus with
γ = −1/(p+ 1) (γ = cos θ).
’t Hooft coupling (λ) is dimensionful in p < 3 dimensions and we
construct a dimensionless coupling given by reff = λpβ

3−p, where
β = 1/T .
No phase transition (single de-confined phase) in 1-d QM case,
richer structure for p = 1,2.
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Regime of valid supergravity (SUGRA) description

To have a valid SUGRA description, we need :
Radius of curvature should be large in units of α′. This implies
reff � 1.
String coupling should be small.

We can combine both requirements to get a constraint on the effective
dimensionless coupling we can probe for a well-defined SUGRA
description (p < 3)

1� λpβ
3−p � N

10−2p
7−p
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Various dimensions - Existing works

p=0 : [Hanada, Nishimura and Takeuchi in 0706.1647 + Catterall
& Wiseman, 0706.3518]
p=1 : This talk [Our recent work arXiv: 1709.07025 (PRD, in
press), also work done using different action by D. Kadoh.]
p=2 : This talk [Preliminary work]

Eventual goal, p=3 : Thermodynamics of N = 4 SYM. Statement :
Can we understand f(λ) 3, f(0) = 1 and f(∞) = 3/4 ?
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p=1 : Maximal SYM in (1+1)-dimensions

Interesting phase structure at finite temperature with a
deconfinement transition dual to a gravity transition (between
uniform D1 and localized D0 phase with spatial Wilson loop being
the order parameter) at strong coupling and large N .
Different temperature dependence in both phases for free energy
(D0 & D1 thermodynamics)
Can see the transition but can’t determine the order !
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Some results (arXiv: 1709.07025)

Figure: Spatial Wilson loop magnitude (left) and susceptibility (right)
vs. inverse dimensionless temperature rβ = 1/t for SU(N) gauge groups with
N = 6, 9 and 12 on 16× 4 and 24× 6 lattices (aspect ratio α = Nx/Nt = 4).
The transition strengthens as N increases, while showing little sensitivity to
the lattice size.
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Some results (arXiv: 1709.07025)
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p=2 : Maximal SYM in (2+1)-dimensions

’t Hooft coupling has dimensions of energy. Construct reff = λβ = 1/t
as dimensionless coupling. Type IIA SUGRA description is valid when
the energy scale, u = r/α′ (defined as fixed expectation value of a
scalar) is in the range shown below :

This translates to the condition (for our dimensionless coupling) as,

1� reff � N
6
5
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Divergence of thermal partition function - I
First discussed by [Kabat, Lifshitz and Lowe, hep-th/9910001,

hep-th/0105171], the thermal SYM partition function has divergence.

I ∼ kN log(f(ζ)) +N2Ifinite

So technically, one can avoid the issue of divergence if N →∞ (another need
for large N) because the finite contribution dominates. For the N we can
access in our numerical simulations, we need to do more !

Use a mass term for the scalar fields in our lattice action to restrict the
moduli space and then extract the finite piece carefully and compare to the
thermodynamics of Dp-branes.

23



An example of divergence showing up at N=4.
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Thermodynamics of D2-branes

For a uniform Dp-brane (p < 3) , we have a prediction for free energy
density which is [Itzhaki et al., hep-th/9802042, Harmark and Obers,
hep-th/0407094],

F = −kpN2λ
1+p
3−p t

14−2p
5−p

where, k can be read off the table in the above reference.

For our case of i.e p = 2, we get :

F = −2.492 N2λ3t
10
3
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Lattice simulations

We focus on calculating the free energy density for the SYM
theory on the lattice restricting to uniform D2 phase.
Choose temperatures t � 1 and large N for multiple lattices.
Computational cost scales as ∼ N7/2, so we restrict to Nmaximum
= 8 on 83, 103 and 123 lattices.
We need to use small mass regulator ζ (discussed before), which
we extrapolate to zero as ζ2 → 0.
Publicly available lattice code for arbitrary N (we have explored
up to N=20 with fermions in 1d, unpublished) :
github.com/daschaich/susy
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Preliminary numerical results
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Preliminary numerical results
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Thank you !
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Thank you !

Funding and computing resources
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Truncated lattice theory

A näıve truncation of U(N) supersymmetric theory to SU(N) does not
work at finite-N .

Breaks the lattice supersymmetry that relates Ua to ψa in the
U(N) construction.
Solution : Represent the truncated gauge links as Ub = eigaAb to
argue that the continuum supersymmetry relating Aa and ψa is
approximately realized in the large-N limit even at non-zero
lattice spacing since g → 0 in the decoupling limit.
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Continuum vs. lattice coupling

The non-orthogonal basis vectors of the A∗d lattice leads to mismatch in
’t Hooft coupling between lattice and continuum. The target
continuum (p+1)-SYM coupling (rτ,cont.) differs from the lattice
coupling as,

rτ,lattice = (d+ 1)
4−p

6−2p

√
d

rτ,cont
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Backup 1
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Backup 2

Lower-dimensional sixteen supercharge SYM with apbc has no sign
problem.
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