Supersymmetry breaking and gauge/gravity duality on the lattice

Raghav G. Jha
(Final Year PhD student)
at Syracuse University

1709.07025 [PRD, in press] , 1800.00012 [PRD 97, 054504] and work in progress with Simon Catterall, Joel Giedt, Anosh Joseph, David Schaich \& Toby Wiseman

April 6, 2018
Lattice BSM 2018, UC Boulder

Outline

- Motivation and possibilities
- Two dimensional $\mathcal{N}=(2,2)$ SYM - supersymmetry breaking
- Holographic connection - two and three dimensional SYM (16 supercharges)

Why lattice supersymmetry (SUSY) ?

Discretization on the lattice furnishes gauge-invariant regularization of gauge theories and provides non-perturbative insights into

- Gauge/gravity (AdS/CFT) duality - potential non-perturbative definition of string theory
- Finite N regime and large N limit of supersymmetric theories.
- Confinement, phase transitions, symmetry breaking and conformal field theories.

Lattice SUSY : Problem and resolution

Problem

Supersymmetry generalizes Poincaré symmetry by adding spinorial generators Q and \bar{Q} to translations, rotations, boosts

The algebra includes $Q \bar{Q}+\bar{Q} Q=2 \sigma^{\mu} P_{\mu}$,
P_{μ} generates infinitesimal translations, which don't exist on the lattice. Supersymmetry explicitly broken at the classical level.

Solution

Preserve a subset of SUSY algebra exactly on the lattice. Possible for theories with $Q \geq 2^{D}$. For ex : $\mathcal{N}=4$ supersymmetric Yang-Mills (SYM). Methods are based on orbifold construction and topological twisting. I will focus only on the twisted construction in this talk.

Lattices in various dimensions

THEORY	R-SYMMETRY	LATTICE CONSTRUCTION ?

$d=2, \mathcal{Q}=4$	$S O(2) \otimes U(1)$	\checkmark
$d=2, \mathcal{Q}=8$	$S O(4) \otimes S U(2)$	\checkmark
$d=2, \mathcal{Q}=16$	$S O(8)$	\checkmark
$d=3, \mathcal{Q}=4$	$U(1)$	
$d=3, \mathcal{Q}=8$	$S O(3) \otimes S U(2)$	\checkmark
$d=3, \mathcal{Q}=16$	$S O(7)$	\checkmark
$d=4, \mathcal{Q}=4$	$U(1)$	
$d=4, \mathcal{Q}=8$	$S O(2) \otimes S U(2)$	
$d=4, \mathcal{Q}=16$	$S O(6)$	\checkmark

SUSY breaking : Witten index

To understand susy breaking non-perturbatively, Witten introduced index, W. As it turns out, W can be written as,

$$
W=\int_{P B C} \mathscr{D}(\cdots) e^{-S}
$$

don't have a way of evaluating this using simulations

Alternatively : Look for ground state energy as order parameter for breaking

$\mathcal{N}=(2,2) \mathrm{SYM}$ in $\mathrm{d}=2$

The action of continuum $\mathcal{N}=(2,2)$ SYM takes the following \mathcal{Q}-exact form after topological twisting

$$
S=\frac{N}{2 \lambda} \mathcal{Q} \int d^{2} x \Lambda
$$

where

$$
\Lambda=\operatorname{Tr}\left(\chi_{\mu \nu} \mathcal{F}_{\mu \nu}+\eta\left[\overline{\mathcal{D}}_{\mu}, \mathcal{D}_{\mu}\right]-\frac{1}{2} \eta d\right)
$$

and $\lambda=g^{2} N$ is the 't Hooft coupling.

The nilpotent supersymmetry transformations associated with the scalar supercharge \mathcal{Q} are given by

$$
\begin{aligned}
\mathcal{Q} \mathcal{A}_{\mu} & =\psi_{\mu}, \\
\mathcal{Q} \psi_{\mu} & =0, \\
\mathcal{Q} \overline{\mathcal{A}}_{\mu} & =0, \\
\mathcal{Q} \chi_{\mu \nu} & =-\overline{\mathcal{F}}_{\mu \nu}, \\
\mathcal{Q} \eta & =d, \\
\mathcal{Q} d & =0 .
\end{aligned}
$$

The four degrees of freedom appearing in this theory are just the twisted fermions ($\eta, \psi_{\mu}, \chi_{\mu \nu}$) and complexified gauge field \mathcal{A}_{μ}. The complexified field is constructed from the usual gauge field A_{μ} and the two scalars B_{μ} present in the untwisted theory: $\mathcal{A}_{\mu}=A_{\mu}+i B_{\mu}$. The twisted theory is naturally written in terms of the complexified covariant derivatives

$$
\begin{equation*}
\mathcal{D}_{\mu}=\partial_{\mu}+\mathcal{A}_{\mu}, \quad \overline{\mathcal{D}}_{\mu}=\partial_{\mu}+\overline{\mathcal{A}}_{\mu} \tag{1}
\end{equation*}
$$

and complexified field strengths

$$
\begin{equation*}
\mathcal{F}_{\mu \nu}=\left[\mathcal{D}_{\mu}, \mathcal{D}_{\nu}\right], \quad \overline{\mathcal{F}}_{\mu \nu}=\left[\overline{\mathcal{D}}_{\mu}, \overline{\mathcal{D}}_{\nu}\right] \tag{2}
\end{equation*}
$$

The action can be written as, $\mathrm{S}=\mathrm{S}_{B}+S_{F}$, where the bosonic action is

$$
S_{B}=\frac{N}{2 \lambda} \sum_{\mathbf{n}} \operatorname{Tr}\left(-\overline{\mathcal{F}}_{\mu \nu}(\mathbf{n}) \mathcal{F}_{\mu \nu}(\mathbf{n})+\frac{1}{2}\left[\overline{\mathcal{D}}_{\mu}, \mathcal{D}_{\mu}\right]^{2}\right),
$$

and the fermionic piece

$$
S_{F}=\frac{N}{2 \lambda} \sum_{\mathbf{n}} \operatorname{Tr}\left(-\chi_{\mu \nu}(\mathbf{n}) \mathcal{D}_{[\mu} \psi_{\nu]}(\mathbf{n})-\eta(\mathbf{n}) \overline{\mathcal{D}}_{\mu} \psi_{\nu}(\mathbf{n})\right)
$$

Also an additional mass term (breaks \mathcal{Q} supersymmetry)

$$
S_{\text {soft }}=\frac{N}{2 \lambda} \mu^{2} \sum_{\mathbf{n}, \mu} \operatorname{Tr}\left(\overline{\mathcal{U}}_{\mu}(\mathbf{n}) \mathcal{U}_{\mu}(\mathbf{n})-\mathbb{I}_{N}\right)^{2}
$$

Fields on the lattice

Extrapolations [PRD 97, 054504]

Figure: Left : $\lim _{\mathrm{a} \rightarrow 0}$, Right : $\lim _{\mu^{2} \rightarrow 0}$, Bottom : $\lim _{\beta \rightarrow \infty}$

Supersymmetry breaking

- Calculate the ground state energy density in the limit $\beta \rightarrow \infty$? (why not just do $\mathrm{T}=0$ calculation)
- Need to use small mass term μ to control flat directions, which we extrapolate to zero after doing continuum extrapolation $(a \rightarrow 0)$.
- Upper bound on energy density $\frac{\mathcal{E}_{\mathrm{VAC}}}{N^{2} \lambda}=0.05(2)$, statistically consistent with zero.

[Similar study done earlier by Kanamori, Sugino and Suzuki based on A-twist Sugino's action]

Applications to holography - gauge/gravity

Original AdS/CFT correspondence
$4 \mathrm{D} \mathcal{N}=4 \mathrm{U}(N)$ super-Yang-Mills theory associated with N D3-branes, is dual to Type IIB string theory on $A d S_{5} \times S_{5}$ in the large N limit.

More general holographic dualities in lower dimensions
Maximally supersymmetric YM in $p+1$ dimensions dual to Dp-branes At low temperatures, and in the decoupling limit : dual description in terms of black holes in Type II A/B supergravity
Decoupling limit: $N \rightarrow \infty$ and $t=T / \lambda^{\frac{1}{3-p}} \ll 1$

Maximal SYM for $\mathrm{p}<3$

- Dimensionally reduce lattice $\mathcal{N}=4$ SYM along (3-p) spatial directions.
- Dimensional reduction : $A_{4}^{*} \rightarrow \mathrm{~A}_{p+1}^{*}$ giving a skewed torus with $\gamma=-1 /(p+1)(\gamma=\cos \theta)$.
- 't Hooft coupling (λ) is dimensionful in $\mathrm{p}<3$ dimensions and we construct a dimensionless coupling given by $\mathrm{r}_{\text {eff }}=\lambda_{p} \beta^{3-p}$, where $\beta=1 / T$.
- No phase transition (single de-confined phase) in 1-d QM case, richer structure for $\mathrm{p}=1,2$.

Regime of valid supergravity (SUGRA) description

To have a valid SUGRA description, we need :

- Radius of curvature should be large in units of α^{\prime}. This implies $r_{\text {eff }} \gg 1$.
- String coupling should be small.

We can combine both requirements to get a constraint on the effective dimensionless coupling we can probe for a well-defined SUGRA description ($\mathrm{p}<3$)

$$
1 \ll \lambda_{p} \beta^{3-p} \ll N^{\frac{10-2 p}{7-p}}
$$

Various dimensions - Existing works

- p=0 : [Hanada, Nishimura and Takeuchi in 0706.1647 + Catterall \& Wiseman, 0706.3518]
- $\mathrm{p}=1$: This talk [Our recent work arXiv: 1709.07025 (PRD, in press), also work done using different action by D. Kadoh.]
- $\mathrm{p}=2$: This talk [Preliminary work]

Eventual goal, $\mathrm{p}=3$: Thermodynamics of $\mathcal{N}=4$ SYM. Statement :
Can we understand $f(\lambda) \ni, f(0)=1$ and $f(\infty)=3 / 4$?

$\mathrm{p}=1$: Maximal SYM in (1+1)-dimensions

- Interesting phase structure at finite temperature with a deconfinement transition dual to a gravity transition (between uniform D1 and localized D0 phase with spatial Wilson loop being the order parameter) at strong coupling and large N.
- Different temperature dependence in both phases for free energy (D0 \& D1 thermodynamics)
- Can see the transition but can't determine the order !

Some results (arXiv: 1709.07025)

Figure: Spatial Wilson loop magnitude (left) and susceptibility (right) vs. inverse dimensionless temperature $r_{\beta}=1 / t$ for $\operatorname{SU}(N)$ gauge groups with $N=6,9$ and 12 on 16×4 and 24×6 lattices (aspect ratio $\alpha=N_{x} / N_{t}=4$). The transition strengthens as N increases, while showing little sensitivity to the lattice size.

Some results (arXiv: 1709.07025)

Figure: Wilson line phases. Uniform distribution (left) and localized distribution (right) corresponding to different black hole phases in the dual theory.

Figure: The critical temperature for different α-lattices (left). D1 phase thermodynamics for $\alpha=2$ (right). Dashed curve (right) is gravity prediction.

$\mathrm{p}=2$: Maximal SYM in $(2+1)$-dimensions

't Hooft coupling has dimensions of energy. Construct $r_{\text {eff }}=\lambda \beta=1 / t$ as dimensionless coupling. Type IIA SUGRA description is valid when the energy scale, $u=r / \alpha^{\prime}$ (defined as fixed expectation value of a scalar) is in the range shown below :
O. Aharony et al. / Physics Reports 323 (2000) 183-386

This translates to the condition (for our dimensionless coupling) as,

$$
1 \ll r_{\mathrm{eff}} \ll N^{\frac{6}{5}}
$$

Divergence of thermal partition function - I

First discussed by [Kabat, Lifshitz and Lowe, hep-th/9910001, hep-th/0105171], the thermal SYM partition function has divergence.

$$
I \sim k N \log (f(\zeta))+N^{2} I_{\text {finite }}
$$

So technically, one can avoid the issue of divergence if $N \rightarrow \infty$ (another need for large N) because the finite contribution dominates. For the N we can access in our numerical simulations, we need to do more!

Use a mass term for the scalar fields in our lattice action to restrict the moduli space and then extract the finite piece carefully and compare to the thermodynamics of Dp-branes.

An example of divergence showing up at $\mathrm{N}=4$.

Thermodynamics of D2-branes

For a uniform Dp-brane $(\mathrm{p}<3)$, we have a prediction for free energy density which is [Itzhaki et al., hep-th/9802042, Harmark and Obers, hep-th/0407094],

$$
\mathcal{F}=-k_{p} N^{2} \lambda^{\frac{1+p}{3-p}} t^{\frac{14-2 p}{5-p}}
$$

where, k can be read off the table in the above reference.

p	0	1	2	3	4
k_{p}	$\left(2^{21} 3^{2} 5^{7} 7^{-19} \pi^{14}\right)^{1 / 5}$	$2^{4} 3^{-4} \pi^{5 / 2}$	$\left(2^{13} 3^{5} 5^{-13} \pi^{8}\right)^{1 / 3}$	$2^{-3} \pi^{2}$	$2^{5} 3^{-7} \pi^{2}$

For our case of $i . e \mathrm{p}=2$, we get :

$$
\mathcal{F}=-2.492 N^{2} \lambda^{3} t^{\frac{10}{3}}
$$

Lattice simulations

- We focus on calculating the free energy density for the SYM theory on the lattice restricting to uniform D2 phase.
- Choose temperatures $t \ll 1$ and large N for multiple lattices.
- Computational cost scales as $\sim N^{7 / 2}$, so we restrict to $N_{\text {maximum }}$ $=8$ on $8^{3}, 10^{3}$ and 12^{3} lattices.
- We need to use small mass regulator ζ (discussed before), which we extrapolate to zero as $\zeta^{2} \rightarrow 0$.
- Publicly available lattice code for arbitrary N (we have explored up to $\mathrm{N}=20$ with fermions in 1 d , unpublished) : github.com/daschaich/susy

Preliminary numerical results

Preliminary numerical results

Thank you!

Thank you!

Funding and computing resources

USQCD

Truncated lattice theory

A naïve truncation of $\mathrm{U}(\mathrm{N})$ supersymmetric theory to $\mathrm{SU}(\mathrm{N})$ does not work at finite- N.

- Breaks the lattice supersymmetry that relates \mathcal{U}_{a} to ψ_{a} in the $\mathrm{U}(\mathrm{N})$ construction.
- Solution : Represent the truncated gauge links as $\mathcal{U}_{b}=e^{i g a \mathcal{A}_{b}}$ to argue that the continuum supersymmetry relating \mathcal{A}_{a} and ψ_{a} is approximately realized in the large- N limit even at non-zero lattice spacing since $g \rightarrow 0$ in the decoupling limit.

Continuum vs. lattice coupling

The non-orthogonal basis vectors of the A_{d}^{*} lattice leads to mismatch in 't Hooft coupling between lattice and continuum. The target continuum ($\mathrm{p}+1$)-SYM coupling ($r_{\tau, \text { cont. }}$.) differs from the lattice coupling as,

$$
r_{\tau, \text { lattice }}=\frac{(d+1)^{\frac{4-p}{6-2 p}}}{\sqrt{d}} r_{\tau, \mathrm{cont}}
$$

Backup 1

Backup 2

Lower-dimensional sixteen supercharge SYM with apbc has no sign problem.

