Recent results from lattice supersymmetry in $2 \leq \mathrm{d}<4$ dimensions

Raghav G. Jha
Syracuse University

arXiv: 1800.00012 and work in progress with
Simon Catterall, Joel Giedt, Anosh Joseph, David Schaich \& Toby Wiseman

March 2, 2018
ICTS, Bangalore

- Motivation and possibilities
- Two dimensional $\mathcal{N}=(2,2)$ SYM -susy breaking ?
- Holographic connection via three dimensional SYM (16 S.C)

Discretization on the lattice furnishes gauge-invariant regularization of gauge theories and provides non-perturbative insights into

- Gauge/gravity (AdS/CFT) duality - potential non-perturbative definition of string theory
- Finite N regime and large N limit of supersymmetric theories.
- Confinement, phase transitions, symmetry breaking and conformal field theories.

Problem

Supersymmetry generalizes Poincaré symmetry by adding spinorial generators Q and \bar{Q} to translations, rotations, boosts

The algebra includes $Q \bar{Q}+\bar{Q} Q=2 \sigma^{\mu} P_{\mu}$,
P_{μ} generates infinitesimal translations, which don't exist on the lattice. Supersymmetry explicitly broken at the classical level.

Solution

Preserve a subset of SUSY algebra exactly on the lattice. Possible for theories with $Q \geq 2^{D}$. For ex : $\mathcal{N}=4$ supersymmetric Yang-Mills (SYM). Methods are based on orbifold construction and topological twisting. I will focus on the latter in this talk.

THEORY	R-SYMMETRY	LATTICE CONSTRUCTION ?

$d=2, \mathcal{Q}=4$	$S O(2) \otimes U(1)$	\checkmark
$d=2, \mathcal{Q}=8$	$S O(4) \otimes S U(2)$	\checkmark
$d=2, \mathcal{Q}=16$	$S O(8)$	\checkmark
$d=3, \mathcal{Q}=4$	$U(1)$	
$d=3, \mathcal{Q}=8$	$S O(3) \otimes S U(2)$	\checkmark
$d=3, \mathcal{Q}=16$	$S O(7)$	\checkmark
$d=4, \mathcal{Q}=4$	$U(1)$	
$d=4, \mathcal{Q}=8$	$S O(2) \otimes S U(2)$	
$d=4, \mathcal{Q}=16$	$S O(6)$	\checkmark

The action of continuum $\mathcal{N}=(2,2)$ SYM takes the following \mathcal{Q}-exact form after topological twisting

$$
S=\frac{N}{2 \lambda} \mathcal{Q} \int d^{2} x \Lambda
$$

where

$$
\Lambda=\operatorname{Tr}\left(\chi_{a b} \mathcal{F}_{a b}+\eta\left[\overline{\mathcal{D}}_{a}, \mathcal{D}_{b}\right]-\frac{1}{2} \eta d\right),
$$

and $\lambda=g^{2} N$ is the 't Hooft coupling.

The nilpotent supersymmetry transformations associated with the scalar supercharge \mathcal{Q} are given by

$$
\begin{aligned}
\mathcal{Q} \mathcal{A}_{a} & =\psi_{a}, \\
\mathcal{Q} \psi_{a} & =0, \\
\mathcal{Q} \overline{\mathcal{A}}_{a} & =0, \\
\mathcal{Q} \chi_{a b} & =-\overline{\mathcal{F}}_{a b}, \\
\mathcal{Q} \eta & =d, \\
\mathcal{Q} d & =0 .
\end{aligned}
$$

The four degrees of freedom appearing in this theory are just the twisted fermions $\left(\eta, \psi_{a}, \chi_{a b}\right)$ and complexified gauge field \mathcal{A}_{a}. The complexified field is constructed from the usual gauge field A_{a} and the two scalars B_{a} present in the untwisted theory: $\mathcal{A}_{a}=A_{a}+i B_{a}$. The twisted theory is naturally written in terms of the complexified covariant derivatives

$$
\begin{equation*}
\mathcal{D}_{a}=\partial_{a}+\mathcal{A}_{a}, \quad \overline{\mathcal{D}}_{a}=\partial_{a}+\overline{\mathcal{A}}_{a} \tag{1}
\end{equation*}
$$

and complexified field strengths

$$
\begin{equation*}
\mathcal{F}_{a b}=\left[\mathcal{D}_{a}, \mathcal{D}_{b}\right], \quad \overline{\mathcal{F}}_{a b}=\left[\overline{\mathcal{D}}_{a}, \overline{\mathcal{D}}_{b}\right] \tag{2}
\end{equation*}
$$

The action can be written as, $\mathrm{S}=\mathrm{S}_{B}+S_{F}$, where the bosonic action is

$$
S_{B}=\frac{N}{2 \lambda} \sum_{\mathbf{n}} \operatorname{Tr}\left(-\overline{\mathcal{F}}_{a b}(\mathbf{n}) \mathcal{F}_{a b}(\mathbf{n})+\frac{1}{2}\left(\overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a}(\mathbf{n})\right)^{2}\right)
$$

and the fermionic piece

$$
S_{F}=\frac{N}{2 \lambda} \sum_{\mathbf{n}} \operatorname{Tr}\left(-\chi_{a b}(\mathbf{n}) \mathcal{D}_{[a}^{(+)} \psi_{b]}(\mathbf{n})-\eta(\mathbf{n}) \overline{\mathcal{D}}_{a}^{(-)} \psi_{a}(\mathbf{n})\right)
$$

Also an additional mass term (breaks \mathcal{Q} supersymmetry)

$$
S_{\mathrm{soft}}=\frac{N}{2 \lambda} \mu^{2} \sum_{\mathbf{n}, a} \operatorname{Tr}\left(\overline{\mathcal{U}}_{a}(\mathbf{n}) \mathcal{U}_{a}(\mathbf{n})-\mathbb{I}_{N}\right)^{2}
$$

Figure: Left : $\lim _{\mathrm{a} \rightarrow 0}$, Right : $\lim _{\mu^{2} \rightarrow 0}$, Bottom : $\lim _{\beta \rightarrow \infty}$

- Calculate the ground state energy density in the limit $\beta \rightarrow \infty$.
- Need to use small mass term μ to control flat directions, which we extrapolate to zero after doing continuum extrapolation $(a \rightarrow 0)$.
- Upper bound on energy density $\frac{\mathcal{E}_{\mathrm{VAC}}}{N^{2} \lambda}=0.05(2)$, statistically consistent with zero.
[Similar study done earlier by Kanamori, Sugino and Suzuki based on A-twist Sugino's action]

Original AdS/CFT correspondence
$4 \mathrm{D} \mathcal{N}=4 \mathrm{U}(N)$ super-Yang-Mills theory associated with N D3-branes, is dual to Type IIB string theory on $A d S_{5} \times S_{5}$ in the large N limit.

More general holographic dualities in lower dimensions
Maximally supersymmetric YM in $p+1$ dimensions dual to Dp-branes At low temperatures, and in the decoupling limit : dual description in terms of black holes in Type II A/B supergravity
Decoupling limit: $N \rightarrow \infty$ and $t=T / \lambda^{\frac{1}{3-p}} \ll 1$

- Dimensionally reduce lattice $\mathcal{N}=4$ SYM along (3-p) spatial directions.
- Dimensional reduction : $A_{4}^{*} \rightarrow \mathrm{~A}_{p+1}^{*}$ giving a skewed torus with $\gamma=-1 /(p+1)(\gamma=\cos \theta)$.
- 't Hooft coupling (λ) is dimensionful in pi3 dimensions and we construct a dimensionless coupling given by $\hat{\lambda}=r_{\text {eff }}=\lambda_{p} \beta^{3-p}$, where $\beta=1 / T$.
- No phase transition (single de-confined phase) in 1-d QM case, richer structure for $\mathrm{p}=1,2$.

To have a valid SUGRA description, we need :

- Radius of curvature should be large in units of α^{\prime}. This implies $r_{\text {eff }} \gg 1$.
- String coupling should be small.

We can combine both requirements to get a constraint on the effective dimensionless coupling we can probe for a well-defined SUGRA description ($\mathrm{p}<3$)

$$
1 \ll \lambda_{p} \beta^{3-p} \ll N^{\frac{10-2 p}{7-p}}
$$

- p=0 : [Hanada, Nishimura and Takeuchi in 0706.1647 + Catterall \& Wiseman, 0706.3518]
- $\mathrm{p}=1$: [See talk by David Schaich and Daisuke Kadoh]
- $\mathrm{p}=2$: This talk [Preliminary work]
-
- $\mathrm{p}=3$: Thermodynamics of $\mathcal{N}=4$ SYM. Statement : Can we understand $\mathrm{f}(\lambda) \ni, \mathrm{f}(0)=1$ and $\mathrm{f}(\infty)=3 / 4$?
't Hooft coupling has dimensions of energy. Construct $r_{\text {eff }}=\lambda \beta=1 / t$ as dimensionless coupling. Type IIA SUGRA description is valid when the energy scale, $u=r / \alpha^{\prime}$ (defined as fixed expectation value of a scalar) is in the range shown below :
O. Aharony et al. / Physics Reports 323 (2000) 183-386

This translates to the condition (for our dimensionless coupling) as,

$$
1 \ll r_{\mathrm{eff}} \ll N^{\frac{6}{5}}
$$

First discussed by [Kabat, Lifshitz and Lowe, hep-th/9910001, hep-th/0105171], the thermal SYM partition function has divergence. It was shown that the thermal Euclidean partition function can be schematically written as [Catterall \& Wiseman, hep-th/0909.4947] ,

$$
I \sim k N \log (f(\zeta))+N^{2} I_{\text {finite }}
$$

So technically, one can avoid the issue of divergence if $N \rightarrow \infty$ (another need for large N) because the finite contribution dominates. For the N we can access in our numerical simulations, we need to do more !

Use a mass term (μ) related to ζ in our lattice action to restrict the moduli space and then extract the finite piece carefully and compare to the thermodynamics of Dp-branes.

For a uniform Dp-brane $(\mathrm{p}<3)$, we have a prediction for free energy density which is [Itzhaki et al., hep-th/9802042, Harmark and Obers, hep-th/0407094],

$$
\mathcal{F}=-k_{p} N^{2} \lambda^{\frac{1+p}{3-p}} t^{\frac{14-2 p}{5-p}}
$$

where, k can be read off the table in the above reference.

p	0	1	2	3	4
k_{p}	$\left(2^{21} 3^{2} 5^{7} 7^{-19} \pi^{14}\right)^{1 / 5}$	$2^{4} 3^{-4} \pi^{5 / 2}$	$\left(2^{13} 3^{5} 5^{-13} \pi^{8}\right)^{1 / 3}$	$2^{-3} \pi^{2}$	$2^{5} 3^{-7} \pi^{2}$

For our case of i.e $\mathrm{p}=2$, we get :

$$
\mathcal{F}=-2.492 N^{2} \lambda^{3} t^{\frac{10}{3}}
$$

- We focus on calculating the free energy density for the SYM theory on the lattice restricting to uniform D2 phase.
- Choose temperatures $t \ll 1$ and large N for multiple lattices.
- Computational cost scales as $\sim N^{7 / 2}$, so we restrict to $N_{\text {maximum }}$ $=8$ on $8^{3}, 10^{3}$ and 12^{3} lattices.
- We need to use small mass regulator ζ (discussed before), which we extrapolate to zero as $\zeta^{2} \rightarrow 0$.
- Publicly available lattice code for arbitrary N : github.com/daschaich/susy

Preliminary

Preliminary

Preliminary

Preliminary

Preliminary

The quark-anti-quark potential calculated for this theory goes as [Maldacena, hep-th/9803002]

$$
E \sim \frac{\left(g_{Y M}^{2} N\right)^{1 / 3}}{L^{2 / 3}} \sim \frac{\left(\alpha r_{\tau}\right)^{1 / 3}}{L}
$$

This is only valid for $\alpha \lambda \beta \gg 1$, choosing $\alpha \sim \mathcal{O}(1)$ implies that $\lambda \beta \gg 1$. Calculated only when the size of the loop is big [not perturbative] !

Thank you!

Thank you!

Funding and computing resources

Lower-dimensional sixteen supercharge SYM with apbc has no sign problem.

