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Outline

Motivation and possibilities

Two dimensional N = (2,2) SYM –susy breaking ?

Holographic connection via three dimensional SYM (16 S.C)
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Why lattice supersymmetry (SUSY) ?

Discretization on the lattice furnishes gauge-invariant regularization of
gauge theories and provides non-perturbative insights into

Gauge/gravity (AdS/CFT) duality - potential non-perturbative
definition of string theory

Finite N regime and large N limit of supersymmetric theories.

Confinement, phase transitions, symmetry breaking and conformal
field theories.
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Lattice SUSY : Problem and resolution

Problem

Supersymmetry generalizes Poincaré symmetry by adding spinorial
generators Q and Q̄ to translations, rotations, boosts

The algebra includes QQ̄+ Q̄Q = 2σµPµ,

Pµ generates infinitesimal translations, which don’t exist on the lattice.
Supersymmetry explicitly broken at the classical level.

Solution

Preserve a subset of SUSY algebra exactly on the lattice. Possible for
theories with Q ≥ 2D. For ex : N = 4 supersymmetric Yang-Mills
(SYM). Methods are based on orbifold construction and topological
twisting. I will focus on the latter in this talk.
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Lattices in various dimensions

THEORY R-SYMMETRY LATTICE CONSTRUCTION ?

d = 2,Q = 4 SO(2)
⊗
U(1) X

d = 2,Q = 8 SO(4)
⊗
SU(2) X

d = 2,Q = 16 SO(8) X

d = 3,Q = 4 U(1)

d = 3,Q = 8 SO(3)
⊗
SU(2) X

d = 3,Q = 16 SO(7) X

d = 4,Q = 4 U(1)

d = 4,Q = 8 SO(2)
⊗
SU(2)

d = 4,Q = 16 SO(6) X
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N = (2,2) SYM in d=2

The action of continuum N = (2, 2) SYM takes the following Q-exact
form after topological twisting

S =
N

2λ
Q
∫
d2xΛ,

where

Λ = Tr

(
χabFab + η[Da,Db]−

1

2
ηd

)
,

and λ = g2N is the ’t Hooft coupling.
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The nilpotent supersymmetry transformations associated with the
scalar supercharge Q are given by

Q Aa = ψa,

Q ψa = 0,

Q Aa = 0,

Q χab = −Fab,
Q η = d,

Q d = 0.
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The four degrees of freedom appearing in this theory are just the
twisted fermions (η, ψa, χab) and complexified gauge field Aa. The
complexified field is constructed from the usual gauge field Aa and the
two scalars Ba present in the untwisted theory: Aa = Aa + iBa. The
twisted theory is naturally written in terms of the complexified
covariant derivatives

Da = ∂a +Aa, Da = ∂a +Aa, (1)

and complexified field strengths

Fab = [Da,Db], Fab = [Da,Db]. (2)
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The action can be written as, S = SB + SF ,where the bosonic action is

SB =
N

2λ

∑

n

Tr
(
−Fab(n)Fab(n) +

1

2

(
D(−)
a Ua(n)

)2)
,

and the fermionic piece

SF =
N

2λ

∑

n

Tr
(
− χab(n)D(+)

[a ψb](n)− η(n)D(−)
a ψa(n)

)
.

Also an additional mass term (breaks Q supersymmetry)

Ssoft =
N

2λ
µ2
∑

n, a

Tr

(
Ua(n)Ua(n)− IN

)2

,
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Fields on the lattice

✲

✻

✉��
�
�
�
�
�
�
�
�
�
�
�
��

U1(n) U1(n), ψ1(n)
η(n)

U2(n)
ψ2(n)

U2(n) χ12(n)

F12(n)

(n + µ̂1)

(n + µ̂1 + µ̂2)(n + µ̂2)

�
�✒

�
�✠❄

✻

✲✛

10 / 31



Extrapolations
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Supersymmetry breaking

Calculate the ground state energy density in the limit β →∞.

Need to use small mass term µ to control flat directions, which we
extrapolate to zero after doing continuum extrapolation (a → 0).

Upper bound on energy density EVAC
N2λ

= 0.05(2), statistically
consistent with zero.

[Similar study done earlier by Kanamori, Sugino and Suzuki based on
A-twist Sugino’s action]
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Applications to holography - gauge/gravity

Original AdS/CFT correspondence

4D N = 4 U(N) super-Yang-Mills theory associated with N D3-branes,
is dual to Type IIB string theory on AdS5 × S5 in the large N limit.

More general holographic dualities in lower dimensions

Maximally supersymmetric YM in p+ 1 dimensions dual to Dp-branes
At low temperatures, and in the decoupling limit : dual description in

terms of black holes in Type II A/B supergravity

Decoupling limit: N →∞ and t = T/λ
1

3−p � 1
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Maximal SYM for p < 3

Dimensionally reduce lattice N = 4 SYM along (3-p) spatial
directions.

Dimensional reduction : A∗4 → A∗p+1 giving a skewed torus with
γ = −1/(p+ 1) (γ = cos θ).

’t Hooft coupling (λ) is dimensionful in p ¡ 3 dimensions and we
construct a dimensionless coupling given by λ̂ = reff = λpβ

3−p,
where β = 1/T .

No phase transition (single de-confined phase) in 1-d QM case,
richer structure for p = 1,2.
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Regime of valid supergravity (SUGRA) description

To have a valid SUGRA description, we need :

Radius of curvature should be large in units of α′. This implies
reff � 1.

String coupling should be small.

We can combine both requirements to get a constraint on the effective
dimensionless coupling we can probe for a well-defined SUGRA
description (p < 3)

1� λpβ
3−p � N

10−2p
7−p
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Various dimensions - progress report

p=0 : [Hanada, Nishimura and Takeuchi in 0706.1647 + Catterall
& Wiseman, 0706.3518]

p=1 : [See talk by David Schaich and Daisuke Kadoh]

p=2 : This talk [Preliminary work]

· · · · · · · · ·
p = 3 : Thermodynamics of N = 4 SYM. Statement : Can we
understand f(λ) 3, f(0) = 1 and f(∞) = 3/4 ?
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Move to p=2 : Maximal SYM in (2+1)-dimensions

’t Hooft coupling has dimensions of energy. Construct reff = λβ = 1/t
as dimensionless coupling. Type IIA SUGRA description is valid when
the energy scale, u = r/α′ (defined as fixed expectation value of a
scalar) is in the range shown below :

This translates to the condition (for our dimensionless coupling) as,

1� reff � N
6
5
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Divergence of thermal partition function - I

First discussed by [Kabat, Lifshitz and Lowe, hep-th/9910001,
hep-th/0105171], the thermal SYM partition function has divergence.
It was shown that the thermal Euclidean partition function can be
schematically written as [Catterall & Wiseman, hep-th/0909.4947] ,

I ∼ kN log(f(ζ)) +N2Ifinite

So technically, one can avoid the issue of divergence if N →∞ (another need
for large N) because the finite contribution dominates. For the N we can
access in our numerical simulations, we need to do more !

Use a mass term (µ) related to ζ in our lattice action to restrict the moduli
space and then extract the finite piece carefully and compare to the
thermodynamics of Dp-branes.
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Thermodynamics of D2-branes

For a uniform Dp-brane (p < 3) , we have a prediction for free energy
density which is [Itzhaki et al., hep-th/9802042, Harmark and Obers,
hep-th/0407094],

F = −kpN2λ
1+p
3−p t

14−2p
5−p

where, k can be read off the table in the above reference.

For our case of i.e p = 2, we get :

F = −2.492 N2λ3t
10
3
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Lattice simulations

We focus on calculating the free energy density for the SYM
theory on the lattice restricting to uniform D2 phase.

Choose temperatures t � 1 and large N for multiple lattices.

Computational cost scales as ∼ N7/2, so we restrict to Nmaximum

= 8 on 83, 103 and 123 lattices.

We need to use small mass regulator ζ (discussed before), which
we extrapolate to zero as ζ2 → 0.

Publicly available lattice code for arbitrary N :
github.com/daschaich/susy
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Preliminary numerical results
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Preliminary numerical results
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Preliminary numerical results
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Preliminary numerical results (8× 8× 8, N = 6)
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Preliminary numerical results (8× 8× 8, N = 6)

0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4

F
N2λ3

t = T/λ

-2.492 t10/3

25 / 31



0

0.04

0.08

0.12

0.16

0.2

0.24

0.28

0.32

0 0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32 0.36 0.4 0.44 0.48

F
N2�3

t = T/�

N=4, 83

N=6, 83

N=6, 123

Uniform D2 phase prediction : -2.492 t10/3

PRELIMINARY

26 / 31



Wilson loops

The quark-anti-quark potential calculated for this theory goes as
[Maldacena, hep-th/9803002]

E ∼ (g2
YMN)1/3

L2/3
∼ (αrτ )1/3

L

This is only valid for αλβ � 1, choosing α ∼ O(1) implies that λβ � 1.
Calculated only when the size of the loop is big [not perturbative] !
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Thank you !
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Thank you !

Funding and computing resources
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Backup 1

Lower-dimensional sixteen supercharge SYM with apbc has no sign
problem.
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Backup 2
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